mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
196 lines
5.7 KiB
Python
196 lines
5.7 KiB
Python
#!/usr/bin/python
|
||
# encoding=utf8
|
||
|
||
'''
|
||
|
||
A Framework of Back Propagation Neural Network(BP) model
|
||
|
||
Easy to use:
|
||
* add many layers as you want !!!
|
||
* clearly see how the loss decreasing
|
||
Easy to expand:
|
||
* more activation functions
|
||
* more loss functions
|
||
* more optimization method
|
||
|
||
Author: Stephen Lee
|
||
Github : https://github.com/RiptideBo
|
||
Date: 2017.11.23
|
||
|
||
'''
|
||
|
||
import numpy as np
|
||
import matplotlib.pyplot as plt
|
||
|
||
|
||
def sigmoid(x):
|
||
return 1 / (1 + np.exp(-1 * x))
|
||
|
||
class DenseLayer():
|
||
'''
|
||
Layers of BP neural network
|
||
'''
|
||
def __init__(self,units,activation=None,learning_rate=None,is_input_layer=False):
|
||
'''
|
||
common connected layer of bp network
|
||
:param units: numbers of neural units
|
||
:param activation: activation function
|
||
:param learning_rate: learning rate for paras
|
||
:param is_input_layer: whether it is input layer or not
|
||
'''
|
||
self.units = units
|
||
self.weight = None
|
||
self.bias = None
|
||
self.activation = activation
|
||
if learning_rate is None:
|
||
learning_rate = 0.3
|
||
self.learn_rate = learning_rate
|
||
self.is_input_layer = is_input_layer
|
||
|
||
def initializer(self,back_units):
|
||
self.weight = np.asmatrix(np.random.normal(0,0.5,(self.units,back_units)))
|
||
self.bias = np.asmatrix(np.random.normal(0,0.5,self.units)).T
|
||
if self.activation is None:
|
||
self.activation = sigmoid
|
||
|
||
def cal_gradient(self):
|
||
if self.activation == sigmoid:
|
||
gradient_mat = np.dot(self.output ,(1- self.output).T)
|
||
gradient_activation = np.diag(np.diag(gradient_mat))
|
||
else:
|
||
gradient_activation = 1
|
||
return gradient_activation
|
||
|
||
def forward_propagation(self,xdata):
|
||
self.xdata = xdata
|
||
if self.is_input_layer:
|
||
# input layer
|
||
self.wx_plus_b = xdata
|
||
self.output = xdata
|
||
return xdata
|
||
else:
|
||
self.wx_plus_b = np.dot(self.weight,self.xdata) - self.bias
|
||
self.output = self.activation(self.wx_plus_b)
|
||
return self.output
|
||
|
||
def back_propagation(self,gradient):
|
||
|
||
gradient_activation = self.cal_gradient() # i * i 维
|
||
gradient = np.asmatrix(np.dot(gradient.T,gradient_activation))
|
||
|
||
self._gradient_weight = np.asmatrix(self.xdata)
|
||
self._gradient_bias = -1
|
||
self._gradient_x = self.weight
|
||
|
||
self.gradient_weight = np.dot(gradient.T,self._gradient_weight.T)
|
||
self.gradient_bias = gradient * self._gradient_bias
|
||
self.gradient = np.dot(gradient,self._gradient_x).T
|
||
# ----------------------upgrade
|
||
# -----------the Negative gradient direction --------
|
||
self.weight = self.weight - self.learn_rate * self.gradient_weight
|
||
self.bias = self.bias - self.learn_rate * self.gradient_bias.T
|
||
|
||
return self.gradient
|
||
|
||
|
||
class BPNN():
|
||
'''
|
||
Back Propagation Neural Network model
|
||
'''
|
||
def __init__(self):
|
||
self.layers = []
|
||
self.train_mse = []
|
||
self.fig_loss = plt.figure()
|
||
self.ax_loss = self.fig_loss.add_subplot(1,1,1)
|
||
|
||
def add_layer(self,layer):
|
||
self.layers.append(layer)
|
||
|
||
def build(self):
|
||
for i,layer in enumerate(self.layers[:]):
|
||
if i < 1:
|
||
layer.is_input_layer = True
|
||
else:
|
||
layer.initializer(self.layers[i-1].units)
|
||
|
||
def summary(self):
|
||
for i,layer in enumerate(self.layers[:]):
|
||
print('------- layer %d -------'%i)
|
||
print('weight.shape ',np.shape(layer.weight))
|
||
print('bias.shape ',np.shape(layer.bias))
|
||
|
||
def train(self,xdata,ydata,train_round,accuracy):
|
||
self.train_round = train_round
|
||
self.accuracy = accuracy
|
||
|
||
self.ax_loss.hlines(self.accuracy, 0, self.train_round * 1.1)
|
||
|
||
x_shape = np.shape(xdata)
|
||
for round_i in range(train_round):
|
||
all_loss = 0
|
||
for row in range(x_shape[0]):
|
||
_xdata = np.asmatrix(xdata[row,:]).T
|
||
_ydata = np.asmatrix(ydata[row,:]).T
|
||
|
||
# forward propagation
|
||
for layer in self.layers:
|
||
_xdata = layer.forward_propagation(_xdata)
|
||
|
||
loss, gradient = self.cal_loss(_ydata, _xdata)
|
||
all_loss = all_loss + loss
|
||
|
||
# back propagation
|
||
# the input_layer does not upgrade
|
||
for layer in self.layers[:0:-1]:
|
||
gradient = layer.back_propagation(gradient)
|
||
|
||
mse = all_loss/x_shape[0]
|
||
self.train_mse.append(mse)
|
||
|
||
self.plot_loss()
|
||
|
||
if mse < self.accuracy:
|
||
print('----达到精度----')
|
||
return mse
|
||
|
||
def cal_loss(self,ydata,ydata_):
|
||
self.loss = np.sum(np.power((ydata - ydata_),2))
|
||
self.loss_gradient = 2 * (ydata_ - ydata)
|
||
# vector (shape is the same as _ydata.shape)
|
||
return self.loss,self.loss_gradient
|
||
|
||
def plot_loss(self):
|
||
if self.ax_loss.lines:
|
||
self.ax_loss.lines.remove(self.ax_loss.lines[0])
|
||
self.ax_loss.plot(self.train_mse, 'r-')
|
||
plt.ion()
|
||
plt.xlabel('step')
|
||
plt.ylabel('loss')
|
||
plt.show()
|
||
plt.pause(0.1)
|
||
|
||
|
||
|
||
|
||
def example():
|
||
|
||
x = np.random.randn(10,10)
|
||
y = np.asarray([[0.8,0.4],[0.4,0.3],[0.34,0.45],[0.67,0.32],
|
||
[0.88,0.67],[0.78,0.77],[0.55,0.66],[0.55,0.43],[0.54,0.1],
|
||
[0.1,0.5]])
|
||
|
||
model = BPNN()
|
||
model.add_layer(DenseLayer(10))
|
||
model.add_layer(DenseLayer(20))
|
||
model.add_layer(DenseLayer(30))
|
||
model.add_layer(DenseLayer(2))
|
||
|
||
model.build()
|
||
|
||
model.summary()
|
||
|
||
model.train(xdata=x,ydata=y,train_round=100,accuracy=0.01)
|
||
|
||
if __name__ == '__main__':
|
||
example()
|