TheAlgorithms-Python/geodesy/haversine_distance.py
Caeden 07e991d553
Add pep8-naming to pre-commit hooks and fixes incorrect naming conventions (#7062)
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038)

* refactor: Fix naming conventions (#7038)

* Update arithmetic_analysis/lu_decomposition.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038)

* chore: Fix naming conventions in doctests (#7038)

* fix: Temporarily disable project euler problem 104 (#7069)

* chore: Fix naming conventions in doctests (#7038)

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-13 00:54:20 +02:00

57 lines
2.4 KiB
Python

from math import asin, atan, cos, radians, sin, sqrt, tan
def haversine_distance(lat1: float, lon1: float, lat2: float, lon2: float) -> float:
"""
Calculate great circle distance between two points in a sphere,
given longitudes and latitudes https://en.wikipedia.org/wiki/Haversine_formula
We know that the globe is "sort of" spherical, so a path between two points
isn't exactly a straight line. We need to account for the Earth's curvature
when calculating distance from point A to B. This effect is negligible for
small distances but adds up as distance increases. The Haversine method treats
the earth as a sphere which allows us to "project" the two points A and B
onto the surface of that sphere and approximate the spherical distance between
them. Since the Earth is not a perfect sphere, other methods which model the
Earth's ellipsoidal nature are more accurate but a quick and modifiable
computation like Haversine can be handy for shorter range distances.
Args:
lat1, lon1: latitude and longitude of coordinate 1
lat2, lon2: latitude and longitude of coordinate 2
Returns:
geographical distance between two points in metres
>>> from collections import namedtuple
>>> point_2d = namedtuple("point_2d", "lat lon")
>>> SAN_FRANCISCO = point_2d(37.774856, -122.424227)
>>> YOSEMITE = point_2d(37.864742, -119.537521)
>>> f"{haversine_distance(*SAN_FRANCISCO, *YOSEMITE):0,.0f} meters"
'254,352 meters'
"""
# CONSTANTS per WGS84 https://en.wikipedia.org/wiki/World_Geodetic_System
# Distance in metres(m)
AXIS_A = 6378137.0 # noqa: N806
AXIS_B = 6356752.314245 # noqa: N806
RADIUS = 6378137 # noqa: N806
# Equation parameters
# Equation https://en.wikipedia.org/wiki/Haversine_formula#Formulation
flattening = (AXIS_A - AXIS_B) / AXIS_A
phi_1 = atan((1 - flattening) * tan(radians(lat1)))
phi_2 = atan((1 - flattening) * tan(radians(lat2)))
lambda_1 = radians(lon1)
lambda_2 = radians(lon2)
# Equation
sin_sq_phi = sin((phi_2 - phi_1) / 2)
sin_sq_lambda = sin((lambda_2 - lambda_1) / 2)
# Square both values
sin_sq_phi *= sin_sq_phi
sin_sq_lambda *= sin_sq_lambda
h_value = sqrt(sin_sq_phi + (cos(phi_1) * cos(phi_2) * sin_sq_lambda))
return 2 * RADIUS * asin(h_value)
if __name__ == "__main__":
import doctest
doctest.testmod()