TheAlgorithms-Python/maths/lucas_lehmer_primality_test.py
Caeden 07e991d553
Add pep8-naming to pre-commit hooks and fixes incorrect naming conventions (#7062)
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038)

* refactor: Fix naming conventions (#7038)

* Update arithmetic_analysis/lu_decomposition.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038)

* chore: Fix naming conventions in doctests (#7038)

* fix: Temporarily disable project euler problem 104 (#7069)

* chore: Fix naming conventions in doctests (#7038)

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-13 00:54:20 +02:00

42 lines
1.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
In mathematics, the LucasLehmer test (LLT) is a primality test for Mersenne
numbers. https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test
A Mersenne number is a number that is one less than a power of two.
That is M_p = 2^p - 1
https://en.wikipedia.org/wiki/Mersenne_prime
The LucasLehmer test is the primality test used by the
Great Internet Mersenne Prime Search (GIMPS) to locate large primes.
"""
# Primality test 2^p - 1
# Return true if 2^p - 1 is prime
def lucas_lehmer_test(p: int) -> bool:
"""
>>> lucas_lehmer_test(p=7)
True
>>> lucas_lehmer_test(p=11)
False
# M_11 = 2^11 - 1 = 2047 = 23 * 89
"""
if p < 2:
raise ValueError("p should not be less than 2!")
elif p == 2:
return True
s = 4
m = (1 << p) - 1
for i in range(p - 2):
s = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))