TheAlgorithms-Python/searches/quick_select.py
weixuanhu b6c3fa8992 Interpolation search - fix endless loop bug, divide 0 bug and update description (#793)
* fix endless loop bug, divide 0 bug and update description

fix an endless bug, for example, if collection = [10,30,40,45,50,66,77,93], item = 67.

fix divide 0 bug,  when right=left it is not OK to point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left])

update 'sorted' to 'ascending sorted' in description to avoid confusion

* delete swap files

* delete 'address' and add input validation
2019-05-18 10:59:12 +08:00

49 lines
1.5 KiB
Python

import random
"""
A python implementation of the quick select algorithm, which is efficient for calculating the value that would appear in the index of a list if it would be sorted, even if it is not already sorted
https://en.wikipedia.org/wiki/Quickselect
"""
def _partition(data, pivot):
"""
Three way partition the data into smaller, equal and greater lists,
in relationship to the pivot
:param data: The data to be sorted (a list)
:param pivot: The value to partition the data on
:return: Three list: smaller, equal and greater
"""
less, equal, greater = [], [], []
for element in data:
if element < pivot:
less.append(element)
elif element > pivot:
greater.append(element)
else:
equal.append(element)
return less, equal, greater
def quickSelect(list, k):
#k = len(list) // 2 when trying to find the median (index that value would be when list is sorted)
#invalid input
if k>=len(list) or k<0:
return None
smaller = []
larger = []
pivot = random.randint(0, len(list) - 1)
pivot = list[pivot]
count = 0
smaller, equal, larger =_partition(list, pivot)
count = len(equal)
m = len(smaller)
#k is the pivot
if m <= k < m + count:
return pivot
# must be in smaller
elif m > k:
return quickSelect(smaller, k)
#must be in larger
else:
return quickSelect(larger, k - (m + count))