TheAlgorithms-Python/ciphers/rsa_factorization.py
Zizhou Zhang e3aa0f65e8 fix implementation errors. (#1568)
I revised my implementation and found out that I have miss a inner loop for t.  x and y should be recalculated everytime when t is divisble by 2. I have also included a more readble source for this algorithm.
2019-11-14 20:29:54 +01:00

57 lines
1.6 KiB
Python

"""
An RSA prime factor algorithm.
The program can efficiently factor RSA prime number given the private key d and
public key e.
Source: on page 3 of https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
More readable source: https://www.di-mgt.com.au/rsa_factorize_n.html
large number can take minutes to factor, therefore are not included in doctest.
"""
import math
import random
from typing import List
def rsafactor(d: int, e: int, N: int) -> List[int]:
"""
This function returns the factors of N, where p*q=N
Return: [p, q]
We call N the RSA modulus, e the encryption exponent, and d the decryption exponent.
The pair (N, e) is the public key. As its name suggests, it is public and is used to
encrypt messages.
The pair (N, d) is the secret key or private key and is known only to the recipient
of encrypted messages.
>>> rsafactor(3, 16971, 25777)
[149, 173]
>>> rsafactor(7331, 11, 27233)
[113, 241]
>>> rsafactor(4021, 13, 17711)
[89, 199]
"""
k = d * e - 1
p = 0
q = 0
while p == 0:
g = random.randint(2, N - 1)
t = k
while True:
if t % 2 == 0:
t = t // 2
x = (g ** t) % N
y = math.gcd(x - 1, N)
if x > 1 and y > 1:
p = y
q = N // y
break # find the correct factors
else:
break # t is not divisible by 2, break and choose another g
return sorted([p, q])
if __name__ == "__main__":
import doctest
doctest.testmod()