TheAlgorithms-Python/fuzzy_logic/fuzzy_operations.py
matkosoric 7f04e5cd34
contribution guidelines checks (#1787)
* spelling corrections

* review

* improved documentation, removed redundant variables, added testing

* added type hint

* camel case to snake case

* spelling fix

* review

* python --> Python # it is a brand name, not a snake

* explicit cast to int

* spaces in int list

* "!= None" to "is not None"

* Update comb_sort.py

* various spelling corrections in documentation & several variables naming conventions fix

* + char in file name

* import dependency - bug fix

Co-authored-by: John Law <johnlaw.po@gmail.com>
2020-03-04 13:40:28 +01:00

103 lines
2.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""README, Author - Jigyasa Gandhi(mailto:jigsgandhi97@gmail.com)
Requirements:
- scikit-fuzzy
- numpy
- matplotlib
Python:
- 3.5
"""
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc).
abc1 = [0, 25, 50]
abc2 = [25, 50, 75]
young = fuzz.membership.trimf(X, abc1)
middle_aged = fuzz.membership.trimf(X, abc2)
# Compute the different operations using inbuilt functions.
one = np.ones(75)
zero = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
union = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
intersection = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
complement_a = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
difference = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) (µA(x) * µB(x))]
alg_sum = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
alg_product = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
bdd_sum = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
bdd_difference = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
import matplotlib.pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title("Young")
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title("Middle aged")
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title("union")
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title("intersection")
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title("complement_a")
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title("difference a/b")
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title("alg_sum")
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title("alg_product")
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title("bdd_sum")
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title("bdd_difference")
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()