mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
e406801f9e
* Reimplement polynomial_regression.py Rename machine_learning/polymonial_regression.py to machine_learning/polynomial_regression.py Reimplement machine_learning/polynomial_regression.py using numpy because the old original implementation was just a how-to on doing polynomial regression using sklearn Add detailed function documentation, doctests, and algorithm explanation * updating DIRECTORY.md * Fix matrix formatting in docstrings * Try to fix failing doctest * Debugging failing doctest * Fix failing doctest attempt 2 * Remove unnecessary return value descriptions in docstrings * Readd placeholder doctest for main function * Fix typo in algorithm description --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
214 lines
7.6 KiB
Python
214 lines
7.6 KiB
Python
"""
|
||
Polynomial regression is a type of regression analysis that models the relationship
|
||
between a predictor x and the response y as an mth-degree polynomial:
|
||
|
||
y = β₀ + β₁x + β₂x² + ... + βₘxᵐ + ε
|
||
|
||
By treating x, x², ..., xᵐ as distinct variables, we see that polynomial regression is a
|
||
special case of multiple linear regression. Therefore, we can use ordinary least squares
|
||
(OLS) estimation to estimate the vector of model parameters β = (β₀, β₁, β₂, ..., βₘ)
|
||
for polynomial regression:
|
||
|
||
β = (XᵀX)⁻¹Xᵀy = X⁺y
|
||
|
||
where X is the design matrix, y is the response vector, and X⁺ denotes the Moore–Penrose
|
||
pseudoinverse of X. In the case of polynomial regression, the design matrix is
|
||
|
||
|1 x₁ x₁² ⋯ x₁ᵐ|
|
||
X = |1 x₂ x₂² ⋯ x₂ᵐ|
|
||
|⋮ ⋮ ⋮ ⋱ ⋮ |
|
||
|1 xₙ xₙ² ⋯ xₙᵐ|
|
||
|
||
In OLS estimation, inverting XᵀX to compute X⁺ can be very numerically unstable. This
|
||
implementation sidesteps this need to invert XᵀX by computing X⁺ using singular value
|
||
decomposition (SVD):
|
||
|
||
β = VΣ⁺Uᵀy
|
||
|
||
where UΣVᵀ is an SVD of X.
|
||
|
||
References:
|
||
- https://en.wikipedia.org/wiki/Polynomial_regression
|
||
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
|
||
- https://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
|
||
- https://en.wikipedia.org/wiki/Singular_value_decomposition
|
||
"""
|
||
|
||
import matplotlib.pyplot as plt
|
||
import numpy as np
|
||
|
||
|
||
class PolynomialRegression:
|
||
__slots__ = "degree", "params"
|
||
|
||
def __init__(self, degree: int) -> None:
|
||
"""
|
||
@raises ValueError: if the polynomial degree is negative
|
||
"""
|
||
if degree < 0:
|
||
raise ValueError("Polynomial degree must be non-negative")
|
||
|
||
self.degree = degree
|
||
self.params = None
|
||
|
||
@staticmethod
|
||
def _design_matrix(data: np.ndarray, degree: int) -> np.ndarray:
|
||
"""
|
||
Constructs a polynomial regression design matrix for the given input data. For
|
||
input data x = (x₁, x₂, ..., xₙ) and polynomial degree m, the design matrix is
|
||
the Vandermonde matrix
|
||
|
||
|1 x₁ x₁² ⋯ x₁ᵐ|
|
||
X = |1 x₂ x₂² ⋯ x₂ᵐ|
|
||
|⋮ ⋮ ⋮ ⋱ ⋮ |
|
||
|1 xₙ xₙ² ⋯ xₙᵐ|
|
||
|
||
Reference: https://en.wikipedia.org/wiki/Vandermonde_matrix
|
||
|
||
@param data: the input predictor values x, either for model fitting or for
|
||
prediction
|
||
@param degree: the polynomial degree m
|
||
@returns: the Vandermonde matrix X (see above)
|
||
@raises ValueError: if input data is not N x 1
|
||
|
||
>>> x = np.array([0, 1, 2])
|
||
>>> PolynomialRegression._design_matrix(x, degree=0)
|
||
array([[1],
|
||
[1],
|
||
[1]])
|
||
>>> PolynomialRegression._design_matrix(x, degree=1)
|
||
array([[1, 0],
|
||
[1, 1],
|
||
[1, 2]])
|
||
>>> PolynomialRegression._design_matrix(x, degree=2)
|
||
array([[1, 0, 0],
|
||
[1, 1, 1],
|
||
[1, 2, 4]])
|
||
>>> PolynomialRegression._design_matrix(x, degree=3)
|
||
array([[1, 0, 0, 0],
|
||
[1, 1, 1, 1],
|
||
[1, 2, 4, 8]])
|
||
>>> PolynomialRegression._design_matrix(np.array([[0, 0], [0 , 0]]), degree=3)
|
||
Traceback (most recent call last):
|
||
...
|
||
ValueError: Data must have dimensions N x 1
|
||
"""
|
||
rows, *remaining = data.shape
|
||
if remaining:
|
||
raise ValueError("Data must have dimensions N x 1")
|
||
|
||
return np.vander(data, N=degree + 1, increasing=True)
|
||
|
||
def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
|
||
"""
|
||
Computes the polynomial regression model parameters using ordinary least squares
|
||
(OLS) estimation:
|
||
|
||
β = (XᵀX)⁻¹Xᵀy = X⁺y
|
||
|
||
where X⁺ denotes the Moore–Penrose pseudoinverse of the design matrix X. This
|
||
function computes X⁺ using singular value decomposition (SVD).
|
||
|
||
References:
|
||
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
|
||
- https://en.wikipedia.org/wiki/Singular_value_decomposition
|
||
- https://en.wikipedia.org/wiki/Multicollinearity
|
||
|
||
@param x_train: the predictor values x for model fitting
|
||
@param y_train: the response values y for model fitting
|
||
@raises ArithmeticError: if X isn't full rank, then XᵀX is singular and β
|
||
doesn't exist
|
||
|
||
>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
|
||
>>> y = x**3 - 2 * x**2 + 3 * x - 5
|
||
>>> poly_reg = PolynomialRegression(degree=3)
|
||
>>> poly_reg.fit(x, y)
|
||
>>> poly_reg.params
|
||
array([-5., 3., -2., 1.])
|
||
>>> poly_reg = PolynomialRegression(degree=20)
|
||
>>> poly_reg.fit(x, y)
|
||
Traceback (most recent call last):
|
||
...
|
||
ArithmeticError: Design matrix is not full rank, can't compute coefficients
|
||
|
||
Make sure errors don't grow too large:
|
||
>>> coefs = np.array([-250, 50, -2, 36, 20, -12, 10, 2, -1, -15, 1])
|
||
>>> y = PolynomialRegression._design_matrix(x, len(coefs) - 1) @ coefs
|
||
>>> poly_reg = PolynomialRegression(degree=len(coefs) - 1)
|
||
>>> poly_reg.fit(x, y)
|
||
>>> np.allclose(poly_reg.params, coefs, atol=10e-3)
|
||
True
|
||
"""
|
||
X = PolynomialRegression._design_matrix(x_train, self.degree) # noqa: N806
|
||
_, cols = X.shape
|
||
if np.linalg.matrix_rank(X) < cols:
|
||
raise ArithmeticError(
|
||
"Design matrix is not full rank, can't compute coefficients"
|
||
)
|
||
|
||
# np.linalg.pinv() computes the Moore–Penrose pseudoinverse using SVD
|
||
self.params = np.linalg.pinv(X) @ y_train
|
||
|
||
def predict(self, data: np.ndarray) -> np.ndarray:
|
||
"""
|
||
Computes the predicted response values y for the given input data by
|
||
constructing the design matrix X and evaluating y = Xβ.
|
||
|
||
@param data: the predictor values x for prediction
|
||
@returns: the predicted response values y = Xβ
|
||
@raises ArithmeticError: if this function is called before the model
|
||
parameters are fit
|
||
|
||
>>> x = np.array([0, 1, 2, 3, 4])
|
||
>>> y = x**3 - 2 * x**2 + 3 * x - 5
|
||
>>> poly_reg = PolynomialRegression(degree=3)
|
||
>>> poly_reg.fit(x, y)
|
||
>>> poly_reg.predict(np.array([-1]))
|
||
array([-11.])
|
||
>>> poly_reg.predict(np.array([-2]))
|
||
array([-27.])
|
||
>>> poly_reg.predict(np.array([6]))
|
||
array([157.])
|
||
>>> PolynomialRegression(degree=3).predict(x)
|
||
Traceback (most recent call last):
|
||
...
|
||
ArithmeticError: Predictor hasn't been fit yet
|
||
"""
|
||
if self.params is None:
|
||
raise ArithmeticError("Predictor hasn't been fit yet")
|
||
|
||
return PolynomialRegression._design_matrix(data, self.degree) @ self.params
|
||
|
||
|
||
def main() -> None:
|
||
"""
|
||
Fit a polynomial regression model to predict fuel efficiency using seaborn's mpg
|
||
dataset
|
||
|
||
>>> pass # Placeholder, function is only for demo purposes
|
||
"""
|
||
import seaborn as sns
|
||
|
||
mpg_data = sns.load_dataset("mpg")
|
||
|
||
poly_reg = PolynomialRegression(degree=2)
|
||
poly_reg.fit(mpg_data.weight, mpg_data.mpg)
|
||
|
||
weight_sorted = np.sort(mpg_data.weight)
|
||
predictions = poly_reg.predict(weight_sorted)
|
||
|
||
plt.scatter(mpg_data.weight, mpg_data.mpg, color="gray", alpha=0.5)
|
||
plt.plot(weight_sorted, predictions, color="red", linewidth=3)
|
||
plt.title("Predicting Fuel Efficiency Using Polynomial Regression")
|
||
plt.xlabel("Weight (lbs)")
|
||
plt.ylabel("Fuel Efficiency (mpg)")
|
||
plt.show()
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import doctest
|
||
|
||
doctest.testmod()
|
||
|
||
main()
|