TheAlgorithms-Python/other/detecting_english_programmatically.py
cclauss b7f13d991c Travis CI: Run black, doctest, flake8, mypy, and pytest (#964)
* Travis CI: Add type checking with mypy

* Create requirements.txt

* script: mypy --ignore-missing-stubs=cv2,numpy .

* Delete requirements.txt

* script: mypy --ignore-missing-imports .

* Run doctests

* Disable doctest -v other/detecting_english_programmatically.py

* Pytest

* No |

* pytest || true

* Run black doctest flake8 mypy pytest

* after_success: Build Directory.md

* Typo in filename: Dictionary.txt --> dictionary.txt'

Discovered via doctest run in #964

* python -m doctest -v

* pip install black flake8 mypy pytest

* pytest --doctest-glob='*.py'

* pytest --doctest-modules

* pytest --doctest-modules ./sorts

* pytest --doctest-modules ./ciphers ./other ./searches ./sorts ./strings || true

* if __name__ == "__main__":

* if __name__ == "__main__":

* if __name__ == '__main__':

* if __name__ == '__main__':

* if __name__ == '__main__':

* Create requirements.txt

* Update requirements.txt

* if __name__ == "__main__":

* Lose the doctests

* if __name__ == '__main__':

* Remove print-a-tuple

* doctest: Added missing spaces

* Update tabu_search.py

* The >>> are not doctests so change to >>)

* Travis CI: Run black, doctest, flake8, mypy, and pytest

* Link to the separate DIRECTORY.md file

* Update README.md
2019-07-08 23:27:51 +08:00

55 lines
1.4 KiB
Python

import os
UPPERLETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
LETTERS_AND_SPACE = UPPERLETTERS + UPPERLETTERS.lower() + ' \t\n'
def loadDictionary():
path = os.path.split(os.path.realpath(__file__))
englishWords = {}
with open(path[0] + '/dictionary.txt') as dictionaryFile:
for word in dictionaryFile.read().split('\n'):
englishWords[word] = None
return englishWords
ENGLISH_WORDS = loadDictionary()
def getEnglishCount(message):
message = message.upper()
message = removeNonLetters(message)
possibleWords = message.split()
if possibleWords == []:
return 0.0
matches = 0
for word in possibleWords:
if word in ENGLISH_WORDS:
matches += 1
return float(matches) / len(possibleWords)
def removeNonLetters(message):
lettersOnly = []
for symbol in message:
if symbol in LETTERS_AND_SPACE:
lettersOnly.append(symbol)
return ''.join(lettersOnly)
def isEnglish(message, wordPercentage = 20, letterPercentage = 85):
"""
>>> isEnglish('Hello World')
True
>>> isEnglish('llold HorWd')
False
"""
wordsMatch = getEnglishCount(message) * 100 >= wordPercentage
numLetters = len(removeNonLetters(message))
messageLettersPercentage = (float(numLetters) / len(message)) * 100
lettersMatch = messageLettersPercentage >= letterPercentage
return wordsMatch and lettersMatch
import doctest
doctest.testmod()