TheAlgorithms-Python/project_euler/problem_046/sol1.py
Nikos Giachoudis 2104fa7aeb
Unify O(sqrt(N)) is_prime functions under project_euler (#6258)
* fixes #5434

* fixes broken solution

* removes assert

* removes assert

* Apply suggestions from code review

Co-authored-by: John Law <johnlaw.po@gmail.com>

* Update project_euler/problem_003/sol1.py

Co-authored-by: John Law <johnlaw.po@gmail.com>
2022-09-14 09:40:04 +01:00

117 lines
2.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Problem 46: https://projecteuler.net/problem=46
It was proposed by Christian Goldbach that every odd composite number can be
written as the sum of a prime and twice a square.
9 = 7 + 2 × 12
15 = 7 + 2 × 22
21 = 3 + 2 × 32
25 = 7 + 2 × 32
27 = 19 + 2 × 22
33 = 31 + 2 × 12
It turns out that the conjecture was false.
What is the smallest odd composite that cannot be written as the sum of a
prime and twice a square?
"""
from __future__ import annotations
import math
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
>>> is_prime(0)
False
>>> is_prime(1)
False
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(87)
False
>>> is_prime(563)
True
>>> is_prime(2999)
True
>>> is_prime(67483)
False
"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
odd_composites = [num for num in range(3, 100001, 2) if not is_prime(num)]
def compute_nums(n: int) -> list[int]:
"""
Returns a list of first n odd composite numbers which do
not follow the conjecture.
>>> compute_nums(1)
[5777]
>>> compute_nums(2)
[5777, 5993]
>>> compute_nums(0)
Traceback (most recent call last):
...
ValueError: n must be >= 0
>>> compute_nums("a")
Traceback (most recent call last):
...
ValueError: n must be an integer
>>> compute_nums(1.1)
Traceback (most recent call last):
...
ValueError: n must be an integer
"""
if not isinstance(n, int):
raise ValueError("n must be an integer")
if n <= 0:
raise ValueError("n must be >= 0")
list_nums = []
for num in range(len(odd_composites)):
i = 0
while 2 * i * i <= odd_composites[num]:
rem = odd_composites[num] - 2 * i * i
if is_prime(rem):
break
i += 1
else:
list_nums.append(odd_composites[num])
if len(list_nums) == n:
return list_nums
return []
def solution() -> int:
"""Return the solution to the problem"""
return compute_nums(1)[0]
if __name__ == "__main__":
print(f"{solution() = }")