mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
8c2986026b
* fix(mypy): type annotations for linear algebra algorithms * refactor: remove linear algebra directory from mypy exclude
179 lines
5.0 KiB
Python
179 lines
5.0 KiB
Python
"""
|
|
Resources:
|
|
- https://en.wikipedia.org/wiki/Conjugate_gradient_method
|
|
- https://en.wikipedia.org/wiki/Definite_symmetric_matrix
|
|
"""
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
|
|
|
|
def _is_matrix_spd(matrix: np.ndarray) -> bool:
|
|
"""
|
|
Returns True if input matrix is symmetric positive definite.
|
|
Returns False otherwise.
|
|
|
|
For a matrix to be SPD, all eigenvalues must be positive.
|
|
|
|
>>> import numpy as np
|
|
>>> matrix = np.array([
|
|
... [4.12401784, -5.01453636, -0.63865857],
|
|
... [-5.01453636, 12.33347422, -3.40493586],
|
|
... [-0.63865857, -3.40493586, 5.78591885]])
|
|
>>> _is_matrix_spd(matrix)
|
|
True
|
|
>>> matrix = np.array([
|
|
... [0.34634879, 1.96165514, 2.18277744],
|
|
... [0.74074469, -1.19648894, -1.34223498],
|
|
... [-0.7687067 , 0.06018373, -1.16315631]])
|
|
>>> _is_matrix_spd(matrix)
|
|
False
|
|
"""
|
|
# Ensure matrix is square.
|
|
assert np.shape(matrix)[0] == np.shape(matrix)[1]
|
|
|
|
# If matrix not symmetric, exit right away.
|
|
if np.allclose(matrix, matrix.T) is False:
|
|
return False
|
|
|
|
# Get eigenvalues and eignevectors for a symmetric matrix.
|
|
eigen_values, _ = np.linalg.eigh(matrix)
|
|
|
|
# Check sign of all eigenvalues.
|
|
# np.all returns a value of type np.bool_
|
|
return bool(np.all(eigen_values > 0))
|
|
|
|
|
|
def _create_spd_matrix(dimension: int) -> Any:
|
|
"""
|
|
Returns a symmetric positive definite matrix given a dimension.
|
|
|
|
Input:
|
|
dimension gives the square matrix dimension.
|
|
|
|
Output:
|
|
spd_matrix is an diminesion x dimensions symmetric positive definite (SPD) matrix.
|
|
|
|
>>> import numpy as np
|
|
>>> dimension = 3
|
|
>>> spd_matrix = _create_spd_matrix(dimension)
|
|
>>> _is_matrix_spd(spd_matrix)
|
|
True
|
|
"""
|
|
random_matrix = np.random.randn(dimension, dimension)
|
|
spd_matrix = np.dot(random_matrix, random_matrix.T)
|
|
assert _is_matrix_spd(spd_matrix)
|
|
return spd_matrix
|
|
|
|
|
|
def conjugate_gradient(
|
|
spd_matrix: np.ndarray,
|
|
load_vector: np.ndarray,
|
|
max_iterations: int = 1000,
|
|
tol: float = 1e-8,
|
|
) -> Any:
|
|
"""
|
|
Returns solution to the linear system np.dot(spd_matrix, x) = b.
|
|
|
|
Input:
|
|
spd_matrix is an NxN Symmetric Positive Definite (SPD) matrix.
|
|
load_vector is an Nx1 vector.
|
|
|
|
Output:
|
|
x is an Nx1 vector that is the solution vector.
|
|
|
|
>>> import numpy as np
|
|
>>> spd_matrix = np.array([
|
|
... [8.73256573, -5.02034289, -2.68709226],
|
|
... [-5.02034289, 3.78188322, 0.91980451],
|
|
... [-2.68709226, 0.91980451, 1.94746467]])
|
|
>>> b = np.array([
|
|
... [-5.80872761],
|
|
... [ 3.23807431],
|
|
... [ 1.95381422]])
|
|
>>> conjugate_gradient(spd_matrix, b)
|
|
array([[-0.63114139],
|
|
[-0.01561498],
|
|
[ 0.13979294]])
|
|
"""
|
|
# Ensure proper dimensionality.
|
|
assert np.shape(spd_matrix)[0] == np.shape(spd_matrix)[1]
|
|
assert np.shape(load_vector)[0] == np.shape(spd_matrix)[0]
|
|
assert _is_matrix_spd(spd_matrix)
|
|
|
|
# Initialize solution guess, residual, search direction.
|
|
x0 = np.zeros((np.shape(load_vector)[0], 1))
|
|
r0 = np.copy(load_vector)
|
|
p0 = np.copy(r0)
|
|
|
|
# Set initial errors in solution guess and residual.
|
|
error_residual = 1e9
|
|
error_x_solution = 1e9
|
|
error = 1e9
|
|
|
|
# Set iteration counter to threshold number of iterations.
|
|
iterations = 0
|
|
|
|
while error > tol:
|
|
|
|
# Save this value so we only calculate the matrix-vector product once.
|
|
w = np.dot(spd_matrix, p0)
|
|
|
|
# The main algorithm.
|
|
|
|
# Update search direction magnitude.
|
|
alpha = np.dot(r0.T, r0) / np.dot(p0.T, w)
|
|
# Update solution guess.
|
|
x = x0 + alpha * p0
|
|
# Calculate new residual.
|
|
r = r0 - alpha * w
|
|
# Calculate new Krylov subspace scale.
|
|
beta = np.dot(r.T, r) / np.dot(r0.T, r0)
|
|
# Calculate new A conjuage search direction.
|
|
p = r + beta * p0
|
|
|
|
# Calculate errors.
|
|
error_residual = np.linalg.norm(r - r0)
|
|
error_x_solution = np.linalg.norm(x - x0)
|
|
error = np.maximum(error_residual, error_x_solution)
|
|
|
|
# Update variables.
|
|
x0 = np.copy(x)
|
|
r0 = np.copy(r)
|
|
p0 = np.copy(p)
|
|
|
|
# Update number of iterations.
|
|
iterations += 1
|
|
if iterations > max_iterations:
|
|
break
|
|
|
|
return x
|
|
|
|
|
|
def test_conjugate_gradient() -> None:
|
|
"""
|
|
>>> test_conjugate_gradient() # self running tests
|
|
"""
|
|
# Create linear system with SPD matrix and known solution x_true.
|
|
dimension = 3
|
|
spd_matrix = _create_spd_matrix(dimension)
|
|
x_true = np.random.randn(dimension, 1)
|
|
b = np.dot(spd_matrix, x_true)
|
|
|
|
# Numpy solution.
|
|
x_numpy = np.linalg.solve(spd_matrix, b)
|
|
|
|
# Our implementation.
|
|
x_conjugate_gradient = conjugate_gradient(spd_matrix, b)
|
|
|
|
# Ensure both solutions are close to x_true (and therefore one another).
|
|
assert np.linalg.norm(x_numpy - x_true) <= 1e-6
|
|
assert np.linalg.norm(x_conjugate_gradient - x_true) <= 1e-6
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|
|
test_conjugate_gradient()
|