TheAlgorithms-Python/maths/tanh.py
Dipankar Mitra c1b3ea5355
The tanh activation function is added (#8689)
* tanh function been added

* tanh function been added

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* tanh function is added

* tanh function is added

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* tanh function added

* tanh function added

* tanh function is added

* Apply suggestions from code review

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
2023-04-25 18:06:14 +02:00

43 lines
1.1 KiB
Python

"""
This script demonstrates the implementation of the tangent hyperbolic
or tanh function.
The function takes a vector of K real numbers as input and
then (e^x - e^(-x))/(e^x + e^(-x)). After through tanh, the
element of the vector mostly -1 between 1.
Script inspired from its corresponding Wikipedia article
https://en.wikipedia.org/wiki/Activation_function
"""
import numpy as np
def tangent_hyperbolic(vector: np.array) -> np.array:
"""
Implements the tanh function
Parameters:
vector: np.array
Returns:
tanh (np.array): The input numpy array after applying tanh.
mathematically (e^x - e^(-x))/(e^x + e^(-x)) can be written as (2/(1+e^(-2x))-1
Examples:
>>> tangent_hyperbolic(np.array([1,5,6,-0.67]))
array([ 0.76159416, 0.9999092 , 0.99998771, -0.58497988])
>>> tangent_hyperbolic(np.array([8,10,2,-0.98,13]))
array([ 0.99999977, 1. , 0.96402758, -0.7530659 , 1. ])
"""
return (2 / (1 + np.exp(-2 * vector))) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()