mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
a0b642cfe5
* Added file basic_orbital_capture * updating DIRECTORY.md * added second source * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed spelling errors * accepted changes * updating DIRECTORY.md * corrected spelling error * Added file basic_orbital_capture * added second source * fixed spelling errors * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * applied changes * reviewed and checked file * added doctest * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * removed redundant constnant * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * added scipy imports * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * added doctests to capture_radii and scipy const * fixed conflicts * finalizing file. Added tests * Update physics/basic_orbital_capture.py --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
179 lines
5.4 KiB
Python
179 lines
5.4 KiB
Python
from math import pow, sqrt
|
||
|
||
from scipy.constants import G, c, pi
|
||
|
||
"""
|
||
These two functions will return the radii of impact for a target object
|
||
of mass M and radius R as well as it's effective cross sectional area σ(sigma).
|
||
That is to say any projectile with velocity v passing within σ, will impact the
|
||
target object with mass M. The derivation of which is given at the bottom
|
||
of this file.
|
||
|
||
The derivation shows that a projectile does not need to aim directly at the target
|
||
body in order to hit it, as R_capture>R_target. Astronomers refer to the effective
|
||
cross section for capture as σ=π*R_capture**2.
|
||
|
||
This algorithm does not account for an N-body problem.
|
||
|
||
"""
|
||
|
||
|
||
def capture_radii(
|
||
target_body_radius: float, target_body_mass: float, projectile_velocity: float
|
||
) -> float:
|
||
"""
|
||
Input Params:
|
||
-------------
|
||
target_body_radius: Radius of the central body SI units: meters | m
|
||
target_body_mass: Mass of the central body SI units: kilograms | kg
|
||
projectile_velocity: Velocity of object moving toward central body
|
||
SI units: meters/second | m/s
|
||
Returns:
|
||
--------
|
||
>>> capture_radii(6.957e8, 1.99e30, 25000.0)
|
||
17209590691.0
|
||
>>> capture_radii(-6.957e8, 1.99e30, 25000.0)
|
||
Traceback (most recent call last):
|
||
...
|
||
ValueError: Radius cannot be less than 0
|
||
>>> capture_radii(6.957e8, -1.99e30, 25000.0)
|
||
Traceback (most recent call last):
|
||
...
|
||
ValueError: Mass cannot be less than 0
|
||
>>> capture_radii(6.957e8, 1.99e30, c+1)
|
||
Traceback (most recent call last):
|
||
...
|
||
ValueError: Cannot go beyond speed of light
|
||
|
||
Returned SI units:
|
||
------------------
|
||
meters | m
|
||
"""
|
||
|
||
if target_body_mass < 0:
|
||
raise ValueError("Mass cannot be less than 0")
|
||
if target_body_radius < 0:
|
||
raise ValueError("Radius cannot be less than 0")
|
||
if projectile_velocity > c:
|
||
raise ValueError("Cannot go beyond speed of light")
|
||
|
||
escape_velocity_squared = (2 * G * target_body_mass) / target_body_radius
|
||
capture_radius = target_body_radius * sqrt(
|
||
1 + escape_velocity_squared / pow(projectile_velocity, 2)
|
||
)
|
||
return round(capture_radius, 0)
|
||
|
||
|
||
def capture_area(capture_radius: float) -> float:
|
||
"""
|
||
Input Param:
|
||
------------
|
||
capture_radius: The radius of orbital capture and impact for a central body of
|
||
mass M and a projectile moving towards it with velocity v
|
||
SI units: meters | m
|
||
Returns:
|
||
--------
|
||
>>> capture_area(17209590691)
|
||
9.304455331329126e+20
|
||
>>> capture_area(-1)
|
||
Traceback (most recent call last):
|
||
...
|
||
ValueError: Cannot have a capture radius less than 0
|
||
|
||
Returned SI units:
|
||
------------------
|
||
meters*meters | m**2
|
||
"""
|
||
|
||
if capture_radius < 0:
|
||
raise ValueError("Cannot have a capture radius less than 0")
|
||
sigma = pi * pow(capture_radius, 2)
|
||
return round(sigma, 0)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
from doctest import testmod
|
||
|
||
testmod()
|
||
|
||
"""
|
||
Derivation:
|
||
|
||
Let: Mt=target mass, Rt=target radius, v=projectile_velocity,
|
||
r_0=radius of projectile at instant 0 to CM of target
|
||
v_p=v at closest approach,
|
||
r_p=radius from projectile to target CM at closest approach,
|
||
R_capture= radius of impact for projectile with velocity v
|
||
|
||
(1)At time=0 the projectile's energy falling from infinity| E=K+U=0.5*m*(v**2)+0
|
||
|
||
E_initial=0.5*m*(v**2)
|
||
|
||
(2)at time=0 the angular momentum of the projectile relative to CM target|
|
||
L_initial=m*r_0*v*sin(Θ)->m*r_0*v*(R_capture/r_0)->m*v*R_capture
|
||
|
||
L_i=m*v*R_capture
|
||
|
||
(3)The energy of the projectile at closest approach will be its kinetic energy
|
||
at closest approach plus gravitational potential energy(-(GMm)/R)|
|
||
E_p=K_p+U_p->E_p=0.5*m*(v_p**2)-(G*Mt*m)/r_p
|
||
|
||
E_p=0.0.5*m*(v_p**2)-(G*Mt*m)/r_p
|
||
|
||
(4)The angular momentum of the projectile relative to the target at closest
|
||
approach will be L_p=m*r_p*v_p*sin(Θ), however relative to the target Θ=90°
|
||
sin(90°)=1|
|
||
|
||
L_p=m*r_p*v_p
|
||
(5)Using conservation of angular momentum and energy, we can write a quadratic
|
||
equation that solves for r_p|
|
||
|
||
(a)
|
||
Ei=Ep-> 0.5*m*(v**2)=0.5*m*(v_p**2)-(G*Mt*m)/r_p-> v**2=v_p**2-(2*G*Mt)/r_p
|
||
|
||
(b)
|
||
Li=Lp-> m*v*R_capture=m*r_p*v_p-> v*R_capture=r_p*v_p-> v_p=(v*R_capture)/r_p
|
||
|
||
(c) b plugs int a|
|
||
v**2=((v*R_capture)/r_p)**2-(2*G*Mt)/r_p->
|
||
|
||
v**2-(v**2)*(R_c**2)/(r_p**2)+(2*G*Mt)/r_p=0->
|
||
|
||
(v**2)*(r_p**2)+2*G*Mt*r_p-(v**2)*(R_c**2)=0
|
||
|
||
(d) Using the quadratic formula, we'll solve for r_p then rearrange to solve to
|
||
R_capture
|
||
|
||
r_p=(-2*G*Mt ± sqrt(4*G^2*Mt^2+ 4(v^4*R_c^2)))/(2*v^2)->
|
||
|
||
r_p=(-G*Mt ± sqrt(G^2*Mt+v^4*R_c^2))/v^2->
|
||
|
||
r_p<0 is something we can ignore, as it has no physical meaning for our purposes.->
|
||
|
||
r_p=(-G*Mt)/v^2 + sqrt(G^2*Mt^2/v^4 + R_c^2)
|
||
|
||
(e)We are trying to solve for R_c. We are looking for impact, so we want r_p=Rt
|
||
|
||
Rt + G*Mt/v^2 = sqrt(G^2*Mt^2/v^4 + R_c^2)->
|
||
|
||
(Rt + G*Mt/v^2)^2 = G^2*Mt^2/v^4 + R_c^2->
|
||
|
||
Rt^2 + 2*G*Mt*Rt/v^2 + G^2*Mt^2/v^4 = G^2*Mt^2/v^4 + R_c^2->
|
||
|
||
Rt**2 + 2*G*Mt*Rt/v**2 = R_c**2->
|
||
|
||
Rt**2 * (1 + 2*G*Mt/Rt *1/v**2) = R_c**2->
|
||
|
||
escape velocity = sqrt(2GM/R)= v_escape**2=2GM/R->
|
||
|
||
Rt**2 * (1 + v_esc**2/v**2) = R_c**2->
|
||
|
||
(6)
|
||
R_capture = Rt * sqrt(1 + v_esc**2/v**2)
|
||
|
||
Source: Problem Set 3 #8 c.Fall_2017|Honors Astronomy|Professor Rachel Bezanson
|
||
|
||
Source #2: http://www.nssc.ac.cn/wxzygx/weixin/201607/P020160718380095698873.pdf
|
||
8.8 Planetary Rendezvous: Pg.368
|
||
"""
|