TheAlgorithms-Python/arithmetic_analysis/newton_method.py
spamegg 473072bd4f
added type hints and doctests to arithmetic_analysis/newton_method.py (#2259)
* added type hints and doctests to arithmetic_analysis/newton_method.py

Continuing #2128
Also changed some variable names, made them more descriptive.

* Added type hints and doctests to arithmetic_analysis/newton_method.py

added a type alias for Callable[[float], float] and cleaned up the exception handling

* added type hints and doctests to arithmetic_analysis/newton_method.py

improved exception handling

* Update newton_method.py

Co-authored-by: Christian Clauss <cclauss@me.com>
2020-08-01 15:17:46 +02:00

51 lines
1.4 KiB
Python

"""Newton's Method."""
# Newton's Method - https://en.wikipedia.org/wiki/Newton%27s_method
from typing import Callable
RealFunc = Callable[[float], float] # type alias for a real -> real function
# function is the f(x) and derivative is the f'(x)
def newton(function: RealFunc, derivative: RealFunc, starting_int: int,) -> float:
"""
>>> newton(lambda x: x ** 3 - 2 * x - 5, lambda x: 3 * x ** 2 - 2, 3)
2.0945514815423474
>>> newton(lambda x: x ** 3 - 1, lambda x: 3 * x ** 2, -2)
1.0
>>> newton(lambda x: x ** 3 - 1, lambda x: 3 * x ** 2, -4)
1.0000000000000102
>>> import math
>>> newton(math.sin, math.cos, 1)
0.0
>>> newton(math.sin, math.cos, 2)
3.141592653589793
>>> newton(math.cos, lambda x: -math.sin(x), 2)
1.5707963267948966
>>> newton(math.cos, lambda x: -math.sin(x), 0)
Traceback (most recent call last):
...
ZeroDivisionError: Could not find root
"""
prev_guess float(starting_int)
while True:
try:
next_guess = prev_guess - function(prev_guess) / derivative(prev_guess)
except ZeroDivisionError:
raise ZeroDivisionError("Could not find root")
if abs(prev_guess - next_guess) < 10 ** -5:
return next_guess
prev_guess = next_guess
def f(x: float) -> float:
return (x ** 3) - (2 * x) - 5
def f1(x: float) -> float:
return 3 * (x ** 2) - 2
if __name__ == "__main__":
print(newton(f, f1, 3))