TheAlgorithms-Python/hashes/chaos_machine.py
pre-commit-ci[bot] 421ace81ed
[pre-commit.ci] pre-commit autoupdate (#9013)
* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/astral-sh/ruff-pre-commit: v0.0.285 → v0.0.286](https://github.com/astral-sh/ruff-pre-commit/compare/v0.0.285...v0.0.286)
- [github.com/tox-dev/pyproject-fmt: 0.13.1 → 1.1.0](https://github.com/tox-dev/pyproject-fmt/compare/0.13.1...1.1.0)

* updating DIRECTORY.md

* Fis ruff rules PIE808,PLR1714

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
2023-08-29 15:18:10 +02:00

103 lines
2.4 KiB
Python

"""example of simple chaos machine"""
# Chaos Machine (K, t, m)
K = [0.33, 0.44, 0.55, 0.44, 0.33]
t = 3
m = 5
# Buffer Space (with Parameters Space)
buffer_space: list[float] = []
params_space: list[float] = []
# Machine Time
machine_time = 0
def push(seed):
global buffer_space, params_space, machine_time, K, m, t
# Choosing Dynamical Systems (All)
for key, value in enumerate(buffer_space):
# Evolution Parameter
e = float(seed / value)
# Control Theory: Orbit Change
value = (buffer_space[(key + 1) % m] + e) % 1
# Control Theory: Trajectory Change
r = (params_space[key] + e) % 1 + 3
# Modification (Transition Function) - Jumps
buffer_space[key] = round(float(r * value * (1 - value)), 10)
params_space[key] = r # Saving to Parameters Space
# Logistic Map
assert max(buffer_space) < 1
assert max(params_space) < 4
# Machine Time
machine_time += 1
def pull():
global buffer_space, params_space, machine_time, K, m, t
# PRNG (Xorshift by George Marsaglia)
def xorshift(x, y):
x ^= y >> 13
y ^= x << 17
x ^= y >> 5
return x
# Choosing Dynamical Systems (Increment)
key = machine_time % m
# Evolution (Time Length)
for _ in range(t):
# Variables (Position + Parameters)
r = params_space[key]
value = buffer_space[key]
# Modification (Transition Function) - Flow
buffer_space[key] = round(float(r * value * (1 - value)), 10)
params_space[key] = (machine_time * 0.01 + r * 1.01) % 1 + 3
# Choosing Chaotic Data
x = int(buffer_space[(key + 2) % m] * (10**10))
y = int(buffer_space[(key - 2) % m] * (10**10))
# Machine Time
machine_time += 1
return xorshift(x, y) % 0xFFFFFFFF
def reset():
global buffer_space, params_space, machine_time, K, m, t
buffer_space = K
params_space = [0] * m
machine_time = 0
if __name__ == "__main__":
# Initialization
reset()
# Pushing Data (Input)
import random
message = random.sample(range(0xFFFFFFFF), 100)
for chunk in message:
push(chunk)
# for controlling
inp = ""
# Pulling Data (Output)
while inp in ("e", "E"):
print(f"{format(pull(), '#04x')}")
print(buffer_space)
print(params_space)
inp = input("(e)exit? ").strip()