TheAlgorithms-Python/machine_learning/self_organizing_map.py
Christian Clauss c909da9b08
pre-commit: Upgrade psf/black for stable style 2023 (#8110)
* pre-commit: Upgrade psf/black for stable style 2023

Updating https://github.com/psf/black ... updating 22.12.0 -> 23.1.0 for their `2023 stable style`.
* https://github.com/psf/black/blob/main/CHANGES.md#2310

> This is the first [psf/black] release of 2023, and following our stability policy, it comes with a number of improvements to our stable style…

Also, add https://github.com/tox-dev/pyproject-fmt and https://github.com/abravalheri/validate-pyproject to pre-commit.

I only modified `.pre-commit-config.yaml` and all other files were modified by pre-commit.ci and psf/black.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-02-01 18:44:54 +05:30

73 lines
2.0 KiB
Python

"""
https://en.wikipedia.org/wiki/Self-organizing_map
"""
import math
class SelfOrganizingMap:
def get_winner(self, weights: list[list[float]], sample: list[int]) -> int:
"""
Compute the winning vector by Euclidean distance
>>> SelfOrganizingMap().get_winner([[1, 2, 3], [4, 5, 6]], [1, 2, 3])
1
"""
d0 = 0.0
d1 = 0.0
for i in range(len(sample)):
d0 += math.pow((sample[i] - weights[0][i]), 2)
d1 += math.pow((sample[i] - weights[1][i]), 2)
return 0 if d0 > d1 else 1
return 0
def update(
self, weights: list[list[int | float]], sample: list[int], j: int, alpha: float
) -> list[list[int | float]]:
"""
Update the winning vector.
>>> SelfOrganizingMap().update([[1, 2, 3], [4, 5, 6]], [1, 2, 3], 1, 0.1)
[[1, 2, 3], [3.7, 4.7, 6]]
"""
for i in range(len(weights)):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
# Driver code
def main() -> None:
# Training Examples ( m, n )
training_samples = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
weights = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
self_organizing_map = SelfOrganizingMap()
epochs = 3
alpha = 0.5
for _ in range(epochs):
for j in range(len(training_samples)):
# training sample
sample = training_samples[j]
# Compute the winning vector
winner = self_organizing_map.get_winner(weights, sample)
# Update the winning vector
weights = self_organizing_map.update(weights, sample, winner, alpha)
# classify test sample
sample = [0, 0, 0, 1]
winner = self_organizing_map.get_winner(weights, sample)
# results
print(f"Clusters that the test sample belongs to : {winner}")
print(f"Weights that have been trained : {weights}")
# running the main() function
if __name__ == "__main__":
main()