TheAlgorithms-Python/matrix/largest_square_area_in_matrix.py
Christian Clauss c909da9b08
pre-commit: Upgrade psf/black for stable style 2023 (#8110)
* pre-commit: Upgrade psf/black for stable style 2023

Updating https://github.com/psf/black ... updating 22.12.0 -> 23.1.0 for their `2023 stable style`.
* https://github.com/psf/black/blob/main/CHANGES.md#2310

> This is the first [psf/black] release of 2023, and following our stability policy, it comes with a number of improvements to our stable style…

Also, add https://github.com/tox-dev/pyproject-fmt and https://github.com/abravalheri/validate-pyproject to pre-commit.

I only modified `.pre-commit-config.yaml` and all other files were modified by pre-commit.ci and psf/black.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-02-01 18:44:54 +05:30

189 lines
5.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Question:
Given a binary matrix mat of size n * m, find out the maximum size square
sub-matrix with all 1s.
---
Example 1:
Input:
n = 2, m = 2
mat = [[1, 1],
[1, 1]]
Output:
2
Explanation: The maximum size of the square
sub-matrix is 2. The matrix itself is the
maximum sized sub-matrix in this case.
---
Example 2
Input:
n = 2, m = 2
mat = [[0, 0],
[0, 0]]
Output: 0
Explanation: There is no 1 in the matrix.
Approach:
We initialize another matrix (dp) with the same dimensions
as the original one initialized with all 0s.
dp_array(i,j) represents the side length of the maximum square whose
bottom right corner is the cell with index (i,j) in the original matrix.
Starting from index (0,0), for every 1 found in the original matrix,
we update the value of the current element as
dp_array(i,j)=dp_array(dp(i1,j),dp_array(i1,j1),dp_array(i,j1)) + 1.
"""
def largest_square_area_in_matrix_top_down_approch(
rows: int, cols: int, mat: list[list[int]]
) -> int:
"""
Function updates the largest_square_area[0], if recursive call found
square with maximum area.
We aren't using dp_array here, so the time complexity would be exponential.
>>> largest_square_area_in_matrix_top_down_approch(2, 2, [[1,1], [1,1]])
2
>>> largest_square_area_in_matrix_top_down_approch(2, 2, [[0,0], [0,0]])
0
"""
def update_area_of_max_square(row: int, col: int) -> int:
# BASE CASE
if row >= rows or col >= cols:
return 0
right = update_area_of_max_square(row, col + 1)
diagonal = update_area_of_max_square(row + 1, col + 1)
down = update_area_of_max_square(row + 1, col)
if mat[row][col]:
sub_problem_sol = 1 + min([right, diagonal, down])
largest_square_area[0] = max(largest_square_area[0], sub_problem_sol)
return sub_problem_sol
else:
return 0
largest_square_area = [0]
update_area_of_max_square(0, 0)
return largest_square_area[0]
def largest_square_area_in_matrix_top_down_approch_with_dp(
rows: int, cols: int, mat: list[list[int]]
) -> int:
"""
Function updates the largest_square_area[0], if recursive call found
square with maximum area.
We are using dp_array here, so the time complexity would be O(N^2).
>>> largest_square_area_in_matrix_top_down_approch_with_dp(2, 2, [[1,1], [1,1]])
2
>>> largest_square_area_in_matrix_top_down_approch_with_dp(2, 2, [[0,0], [0,0]])
0
"""
def update_area_of_max_square_using_dp_array(
row: int, col: int, dp_array: list[list[int]]
) -> int:
if row >= rows or col >= cols:
return 0
if dp_array[row][col] != -1:
return dp_array[row][col]
right = update_area_of_max_square_using_dp_array(row, col + 1, dp_array)
diagonal = update_area_of_max_square_using_dp_array(row + 1, col + 1, dp_array)
down = update_area_of_max_square_using_dp_array(row + 1, col, dp_array)
if mat[row][col]:
sub_problem_sol = 1 + min([right, diagonal, down])
largest_square_area[0] = max(largest_square_area[0], sub_problem_sol)
dp_array[row][col] = sub_problem_sol
return sub_problem_sol
else:
return 0
largest_square_area = [0]
dp_array = [[-1] * cols for _ in range(rows)]
update_area_of_max_square_using_dp_array(0, 0, dp_array)
return largest_square_area[0]
def largest_square_area_in_matrix_bottom_up(
rows: int, cols: int, mat: list[list[int]]
) -> int:
"""
Function updates the largest_square_area, using bottom up approach.
>>> largest_square_area_in_matrix_bottom_up(2, 2, [[1,1], [1,1]])
2
>>> largest_square_area_in_matrix_bottom_up(2, 2, [[0,0], [0,0]])
0
"""
dp_array = [[0] * (cols + 1) for _ in range(rows + 1)]
largest_square_area = 0
for row in range(rows - 1, -1, -1):
for col in range(cols - 1, -1, -1):
right = dp_array[row][col + 1]
diagonal = dp_array[row + 1][col + 1]
bottom = dp_array[row + 1][col]
if mat[row][col] == 1:
dp_array[row][col] = 1 + min(right, diagonal, bottom)
largest_square_area = max(dp_array[row][col], largest_square_area)
else:
dp_array[row][col] = 0
return largest_square_area
def largest_square_area_in_matrix_bottom_up_space_optimization(
rows: int, cols: int, mat: list[list[int]]
) -> int:
"""
Function updates the largest_square_area, using bottom up
approach. with space optimization.
>>> largest_square_area_in_matrix_bottom_up_space_optimization(2, 2, [[1,1], [1,1]])
2
>>> largest_square_area_in_matrix_bottom_up_space_optimization(2, 2, [[0,0], [0,0]])
0
"""
current_row = [0] * (cols + 1)
next_row = [0] * (cols + 1)
largest_square_area = 0
for row in range(rows - 1, -1, -1):
for col in range(cols - 1, -1, -1):
right = current_row[col + 1]
diagonal = next_row[col + 1]
bottom = next_row[col]
if mat[row][col] == 1:
current_row[col] = 1 + min(right, diagonal, bottom)
largest_square_area = max(current_row[col], largest_square_area)
else:
current_row[col] = 0
next_row = current_row
return largest_square_area
if __name__ == "__main__":
import doctest
doctest.testmod()
print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))