mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
311 lines
8.2 KiB
Python
311 lines
8.2 KiB
Python
from collections import deque
|
|
|
|
|
|
def _input(message):
|
|
return input(message).strip().split(" ")
|
|
|
|
|
|
def initialize_unweighted_directed_graph(
|
|
node_count: int, edge_count: int
|
|
) -> dict[int, list[int]]:
|
|
graph: dict[int, list[int]] = {}
|
|
for i in range(node_count):
|
|
graph[i + 1] = []
|
|
|
|
for e in range(edge_count):
|
|
x, y = [int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> ")]
|
|
graph[x].append(y)
|
|
return graph
|
|
|
|
|
|
def initialize_unweighted_undirected_graph(
|
|
node_count: int, edge_count: int
|
|
) -> dict[int, list[int]]:
|
|
graph: dict[int, list[int]] = {}
|
|
for i in range(node_count):
|
|
graph[i + 1] = []
|
|
|
|
for e in range(edge_count):
|
|
x, y = [int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> ")]
|
|
graph[x].append(y)
|
|
graph[y].append(x)
|
|
return graph
|
|
|
|
|
|
def initialize_weighted_undirected_graph(
|
|
node_count: int, edge_count: int
|
|
) -> dict[int, list[tuple[int, int]]]:
|
|
graph: dict[int, list[tuple[int, int]]] = {}
|
|
for i in range(node_count):
|
|
graph[i + 1] = []
|
|
|
|
for e in range(edge_count):
|
|
x, y, w = [int(i) for i in _input(f"Edge {e + 1}: <node1> <node2> <weight> ")]
|
|
graph[x].append((y, w))
|
|
graph[y].append((x, w))
|
|
return graph
|
|
|
|
|
|
if __name__ == "__main__":
|
|
n, m = [int(i) for i in _input("Number of nodes and edges: ")]
|
|
|
|
graph_choice = int(
|
|
_input(
|
|
"Press 1 or 2 or 3 \n"
|
|
"1. Unweighted directed \n"
|
|
"2. Unweighted undirected \n"
|
|
"3. Weighted undirected \n"
|
|
)[0]
|
|
)
|
|
|
|
g = {
|
|
1: initialize_unweighted_directed_graph,
|
|
2: initialize_unweighted_undirected_graph,
|
|
3: initialize_weighted_undirected_graph,
|
|
}[graph_choice](n, m)
|
|
|
|
|
|
"""
|
|
--------------------------------------------------------------------------------
|
|
Depth First Search.
|
|
Args : G - Dictionary of edges
|
|
s - Starting Node
|
|
Vars : vis - Set of visited nodes
|
|
S - Traversal Stack
|
|
--------------------------------------------------------------------------------
|
|
"""
|
|
|
|
|
|
def dfs(G, s):
|
|
vis, S = {s}, [s]
|
|
print(s)
|
|
while S:
|
|
flag = 0
|
|
for i in G[S[-1]]:
|
|
if i not in vis:
|
|
S.append(i)
|
|
vis.add(i)
|
|
flag = 1
|
|
print(i)
|
|
break
|
|
if not flag:
|
|
S.pop()
|
|
|
|
|
|
"""
|
|
--------------------------------------------------------------------------------
|
|
Breadth First Search.
|
|
Args : G - Dictionary of edges
|
|
s - Starting Node
|
|
Vars : vis - Set of visited nodes
|
|
Q - Traversal Stack
|
|
--------------------------------------------------------------------------------
|
|
"""
|
|
|
|
|
|
def bfs(G, s):
|
|
vis, Q = {s}, deque([s])
|
|
print(s)
|
|
while Q:
|
|
u = Q.popleft()
|
|
for v in G[u]:
|
|
if v not in vis:
|
|
vis.add(v)
|
|
Q.append(v)
|
|
print(v)
|
|
|
|
|
|
"""
|
|
--------------------------------------------------------------------------------
|
|
Dijkstra's shortest path Algorithm
|
|
Args : G - Dictionary of edges
|
|
s - Starting Node
|
|
Vars : dist - Dictionary storing shortest distance from s to every other node
|
|
known - Set of knows nodes
|
|
path - Preceding node in path
|
|
--------------------------------------------------------------------------------
|
|
"""
|
|
|
|
|
|
def dijk(G, s):
|
|
dist, known, path = {s: 0}, set(), {s: 0}
|
|
while True:
|
|
if len(known) == len(G) - 1:
|
|
break
|
|
mini = 100000
|
|
for i in dist:
|
|
if i not in known and dist[i] < mini:
|
|
mini = dist[i]
|
|
u = i
|
|
known.add(u)
|
|
for v in G[u]:
|
|
if v[0] not in known:
|
|
if dist[u] + v[1] < dist.get(v[0], 100000):
|
|
dist[v[0]] = dist[u] + v[1]
|
|
path[v[0]] = u
|
|
for i in dist:
|
|
if i != s:
|
|
print(dist[i])
|
|
|
|
|
|
"""
|
|
--------------------------------------------------------------------------------
|
|
Topological Sort
|
|
--------------------------------------------------------------------------------
|
|
"""
|
|
|
|
|
|
def topo(G, ind=None, Q=None):
|
|
if Q is None:
|
|
Q = [1]
|
|
if ind is None:
|
|
ind = [0] * (len(G) + 1) # SInce oth Index is ignored
|
|
for u in G:
|
|
for v in G[u]:
|
|
ind[v] += 1
|
|
Q = deque()
|
|
for i in G:
|
|
if ind[i] == 0:
|
|
Q.append(i)
|
|
if len(Q) == 0:
|
|
return
|
|
v = Q.popleft()
|
|
print(v)
|
|
for w in G[v]:
|
|
ind[w] -= 1
|
|
if ind[w] == 0:
|
|
Q.append(w)
|
|
topo(G, ind, Q)
|
|
|
|
|
|
"""
|
|
--------------------------------------------------------------------------------
|
|
Reading an Adjacency matrix
|
|
--------------------------------------------------------------------------------
|
|
"""
|
|
|
|
|
|
def adjm():
|
|
n = input().strip()
|
|
a = []
|
|
for i in range(n):
|
|
a.append(map(int, input().strip().split()))
|
|
return a, n
|
|
|
|
|
|
"""
|
|
--------------------------------------------------------------------------------
|
|
Floyd Warshall's algorithm
|
|
Args : G - Dictionary of edges
|
|
s - Starting Node
|
|
Vars : dist - Dictionary storing shortest distance from s to every other node
|
|
known - Set of knows nodes
|
|
path - Preceding node in path
|
|
|
|
--------------------------------------------------------------------------------
|
|
"""
|
|
|
|
|
|
def floy(A_and_n):
|
|
(A, n) = A_and_n
|
|
dist = list(A)
|
|
path = [[0] * n for i in range(n)]
|
|
for k in range(n):
|
|
for i in range(n):
|
|
for j in range(n):
|
|
if dist[i][j] > dist[i][k] + dist[k][j]:
|
|
dist[i][j] = dist[i][k] + dist[k][j]
|
|
path[i][k] = k
|
|
print(dist)
|
|
|
|
|
|
"""
|
|
--------------------------------------------------------------------------------
|
|
Prim's MST Algorithm
|
|
Args : G - Dictionary of edges
|
|
s - Starting Node
|
|
Vars : dist - Dictionary storing shortest distance from s to nearest node
|
|
known - Set of knows nodes
|
|
path - Preceding node in path
|
|
--------------------------------------------------------------------------------
|
|
"""
|
|
|
|
|
|
def prim(G, s):
|
|
dist, known, path = {s: 0}, set(), {s: 0}
|
|
while True:
|
|
if len(known) == len(G) - 1:
|
|
break
|
|
mini = 100000
|
|
for i in dist:
|
|
if i not in known and dist[i] < mini:
|
|
mini = dist[i]
|
|
u = i
|
|
known.add(u)
|
|
for v in G[u]:
|
|
if v[0] not in known:
|
|
if v[1] < dist.get(v[0], 100000):
|
|
dist[v[0]] = v[1]
|
|
path[v[0]] = u
|
|
return dist
|
|
|
|
|
|
"""
|
|
--------------------------------------------------------------------------------
|
|
Accepting Edge list
|
|
Vars : n - Number of nodes
|
|
m - Number of edges
|
|
Returns : l - Edge list
|
|
n - Number of Nodes
|
|
--------------------------------------------------------------------------------
|
|
"""
|
|
|
|
|
|
def edglist():
|
|
n, m = map(int, input().split(" "))
|
|
edges = []
|
|
for i in range(m):
|
|
edges.append(map(int, input().split(" ")))
|
|
return edges, n
|
|
|
|
|
|
"""
|
|
--------------------------------------------------------------------------------
|
|
Kruskal's MST Algorithm
|
|
Args : E - Edge list
|
|
n - Number of Nodes
|
|
Vars : s - Set of all nodes as unique disjoint sets (initially)
|
|
--------------------------------------------------------------------------------
|
|
"""
|
|
|
|
|
|
def krusk(E_and_n):
|
|
# Sort edges on the basis of distance
|
|
(E, n) = E_and_n
|
|
E.sort(reverse=True, key=lambda x: x[2])
|
|
s = [{i} for i in range(1, n + 1)]
|
|
while True:
|
|
if len(s) == 1:
|
|
break
|
|
print(s)
|
|
x = E.pop()
|
|
for i in range(len(s)):
|
|
if x[0] in s[i]:
|
|
break
|
|
for j in range(len(s)):
|
|
if x[1] in s[j]:
|
|
if i == j:
|
|
break
|
|
s[j].update(s[i])
|
|
s.pop(i)
|
|
break
|
|
|
|
|
|
# find the isolated node in the graph
|
|
def find_isolated_nodes(graph):
|
|
isolated = []
|
|
for node in graph:
|
|
if not graph[node]:
|
|
isolated.append(node)
|
|
return isolated
|