TheAlgorithms-Python/project_euler/problem_33/sol1.py
Charley 80e1c8748a Added Problem 33 (#1440)
* Create sol1.py

* Create __init__.py

* Update sol1.py

* corrected range

* Update sol1.py
2019-10-31 17:50:39 +05:30

56 lines
1.5 KiB
Python

"""
Problem:
The fraction 49/98 is a curious fraction, as an inexperienced
mathematician in attempting to simplify it may incorrectly believe
that 49/98 = 4/8, which is correct, is obtained by cancelling the 9s.
We shall consider fractions like, 30/50 = 3/5, to be trivial examples.
There are exactly four non-trivial examples of this type of fraction,
less than one in value, and containing two digits in the numerator
and denominator.
If the product of these four fractions is given in its lowest common
terms, find the value of the denominator.
"""
def isDigitCancelling(num, den):
if num != den:
if num % 10 == den // 10:
if (num // 10) / (den % 10) == num / den:
return True
def solve(digit_len: int) -> str:
"""
>>> solve(2)
'16/64 , 19/95 , 26/65 , 49/98'
>>> solve(3)
'16/64 , 19/95 , 26/65 , 49/98'
>>> solve(4)
'16/64 , 19/95 , 26/65 , 49/98'
>>> solve(0)
''
>>> solve(5)
'16/64 , 19/95 , 26/65 , 49/98'
"""
solutions = []
den = 11
last_digit = int("1" + "0" * digit_len)
for num in range(den, last_digit):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if isDigitCancelling(num, den):
solutions.append("{}/{}".format(num, den))
den += 1
num += 1
den = 10
solutions = " , ".join(solutions)
return solutions
if __name__ == "__main__":
print(solve(2))