TheAlgorithms-Python/data_structures/binary_tree/binary_search_tree.py
2019-10-07 23:29:14 +05:00

263 lines
7.7 KiB
Python

"""
A binary search Tree
"""
class Node:
def __init__(self, label, parent):
self.label = label
self.left = None
self.right = None
# Added in order to delete a node easier
self.parent = parent
def getLabel(self):
return self.label
def setLabel(self, label):
self.label = label
def getLeft(self):
return self.left
def setLeft(self, left):
self.left = left
def getRight(self):
return self.right
def setRight(self, right):
self.right = right
def getParent(self):
return self.parent
def setParent(self, parent):
self.parent = parent
class BinarySearchTree:
def __init__(self):
self.root = None
# Insert a new node in Binary Search Tree with value label
def insert(self, label):
# Create a new Node
new_node = Node(label, None)
# If Tree is empty
if self.empty():
self.root = new_node
else:
# If Tree is not empty
curr_node = self.root
# While we don't get to a leaf
while curr_node is not None:
# We keep reference of the parent node
parent_node = curr_node
# If node label is less than current node
if new_node.getLabel() < curr_node.getLabel():
# We go left
curr_node = curr_node.getLeft()
else:
# Else we go right
curr_node = curr_node.getRight()
# We insert the new node in a leaf
if new_node.getLabel() < parent_node.getLabel():
parent_node.setLeft(new_node)
else:
parent_node.setRight(new_node)
# Set parent to the new node
new_node.setParent(parent_node)
def delete(self, label):
if not self.empty():
# Look for the node with that label
node = self.getNode(label)
# If the node exists
if node is not None:
# If it has no children
if node.getLeft() is None and node.getRight() is None:
self.__reassignNodes(node, None)
node = None
# Has only right children
elif node.getLeft() is None and node.getRight() is not None:
self.__reassignNodes(node, node.getRight())
# Has only left children
elif node.getLeft() is not None and node.getRight() is None:
self.__reassignNodes(node, node.getLeft())
# Has two children
else:
# Gets the max value of the left branch
tmpNode = self.getMax(node.getLeft())
# Deletes the tmpNode
self.delete(tmpNode.getLabel())
# Assigns the value to the node to delete and keesp tree structure
node.setLabel(tmpNode.getLabel())
def getNode(self, label):
curr_node = None
# If the tree is not empty
if not self.empty():
# Get tree root
curr_node = self.getRoot()
# While we don't find the node we look for
# I am using lazy evaluation here to avoid NoneType Attribute error
while curr_node is not None and curr_node.getLabel() is not label:
# If node label is less than current node
if label < curr_node.getLabel():
# We go left
curr_node = curr_node.getLeft()
else:
# Else we go right
curr_node = curr_node.getRight()
return curr_node
def getMax(self, root=None):
if root is not None:
curr_node = root
else:
# We go deep on the right branch
curr_node = self.getRoot()
if not self.empty():
while curr_node.getRight() is not None:
curr_node = curr_node.getRight()
return curr_node
def getMin(self, root=None):
if root is not None:
curr_node = root
else:
# We go deep on the left branch
curr_node = self.getRoot()
if not self.empty():
curr_node = self.getRoot()
while curr_node.getLeft() is not None:
curr_node = curr_node.getLeft()
return curr_node
def empty(self):
if self.root is None:
return True
return False
def __InOrderTraversal(self, curr_node):
nodeList = []
if curr_node is not None:
nodeList.insert(0, curr_node)
nodeList = nodeList + self.__InOrderTraversal(curr_node.getLeft())
nodeList = nodeList + self.__InOrderTraversal(curr_node.getRight())
return nodeList
def getRoot(self):
return self.root
def __isRightChildren(self, node):
if node == node.getParent().getRight():
return True
return False
def __reassignNodes(self, node, newChildren):
if newChildren is not None:
newChildren.setParent(node.getParent())
if node.getParent() is not None:
# If it is the Right Children
if self.__isRightChildren(node):
node.getParent().setRight(newChildren)
else:
# Else it is the left children
node.getParent().setLeft(newChildren)
# This function traversal the tree. By default it returns an
# In order traversal list. You can pass a function to traversal
# The tree as needed by client code
def traversalTree(self, traversalFunction=None, root=None):
if traversalFunction is None:
# Returns a list of nodes in preOrder by default
return self.__InOrderTraversal(self.root)
else:
# Returns a list of nodes in the order that the users wants to
return traversalFunction(self.root)
# Returns an string of all the nodes labels in the list
# In Order Traversal
def __str__(self):
list = self.__InOrderTraversal(self.root)
str = ""
for x in list:
str = str + " " + x.getLabel().__str__()
return str
def InPreOrder(curr_node):
nodeList = []
if curr_node is not None:
nodeList = nodeList + InPreOrder(curr_node.getLeft())
nodeList.insert(0, curr_node.getLabel())
nodeList = nodeList + InPreOrder(curr_node.getRight())
return nodeList
def testBinarySearchTree():
r"""
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
"""
r"""
Example After Deletion
7
/ \
1 4
"""
t = BinarySearchTree()
t.insert(8)
t.insert(3)
t.insert(6)
t.insert(1)
t.insert(10)
t.insert(14)
t.insert(13)
t.insert(4)
t.insert(7)
# Prints all the elements of the list in order traversal
print(t.__str__())
if t.getNode(6) is not None:
print("The label 6 exists")
else:
print("The label 6 doesn't exist")
if t.getNode(-1) is not None:
print("The label -1 exists")
else:
print("The label -1 doesn't exist")
if not t.empty():
print(("Max Value: ", t.getMax().getLabel()))
print(("Min Value: ", t.getMin().getLabel()))
t.delete(13)
t.delete(10)
t.delete(8)
t.delete(3)
t.delete(6)
t.delete(14)
# Gets all the elements of the tree In pre order
# And it prints them
list = t.traversalTree(InPreOrder, t.root)
for x in list:
print(x)
if __name__ == "__main__":
testBinarySearchTree()