TheAlgorithms-Python/maths/line_length.py
Christian Clauss c909da9b08
pre-commit: Upgrade psf/black for stable style 2023 (#8110)
* pre-commit: Upgrade psf/black for stable style 2023

Updating https://github.com/psf/black ... updating 22.12.0 -> 23.1.0 for their `2023 stable style`.
* https://github.com/psf/black/blob/main/CHANGES.md#2310

> This is the first [psf/black] release of 2023, and following our stability policy, it comes with a number of improvements to our stable style…

Also, add https://github.com/tox-dev/pyproject-fmt and https://github.com/abravalheri/validate-pyproject to pre-commit.

I only modified `.pre-commit-config.yaml` and all other files were modified by pre-commit.ci and psf/black.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-02-01 18:44:54 +05:30

66 lines
1.6 KiB
Python

from __future__ import annotations
import math
from collections.abc import Callable
def line_length(
fnc: Callable[[int | float], int | float],
x_start: int | float,
x_end: int | float,
steps: int = 100,
) -> float:
"""
Approximates the arc length of a line segment by treating the curve as a
sequence of linear lines and summing their lengths
:param fnc: a function which defines a curve
:param x_start: left end point to indicate the start of line segment
:param x_end: right end point to indicate end of line segment
:param steps: an accuracy gauge; more steps increases accuracy
:return: a float representing the length of the curve
>>> def f(x):
... return x
>>> f"{line_length(f, 0, 1, 10):.6f}"
'1.414214'
>>> def f(x):
... return 1
>>> f"{line_length(f, -5.5, 4.5):.6f}"
'10.000000'
>>> def f(x):
... return math.sin(5 * x) + math.cos(10 * x) + x * x/10
>>> f"{line_length(f, 0.0, 10.0, 10000):.6f}"
'69.534930'
"""
x1 = x_start
fx1 = fnc(x_start)
length = 0.0
for _ in range(steps):
# Approximates curve as a sequence of linear lines and sums their length
x2 = (x_end - x_start) / steps + x1
fx2 = fnc(x2)
length += math.hypot(x2 - x1, fx2 - fx1)
# Increment step
x1 = x2
fx1 = fx2
return length
if __name__ == "__main__":
def f(x):
return math.sin(10 * x)
print("f(x) = sin(10 * x)")
print("The length of the curve from x = -10 to x = 10 is:")
i = 10
while i <= 100000:
print(f"With {i} steps: {line_length(f, -10, 10, i)}")
i *= 10