TheAlgorithms-Python/data_structures/binary_tree/binary_search_tree.py
matkosoric 7f04e5cd34
contribution guidelines checks (#1787)
* spelling corrections

* review

* improved documentation, removed redundant variables, added testing

* added type hint

* camel case to snake case

* spelling fix

* review

* python --> Python # it is a brand name, not a snake

* explicit cast to int

* spaces in int list

* "!= None" to "is not None"

* Update comb_sort.py

* various spelling corrections in documentation & several variables naming conventions fix

* + char in file name

* import dependency - bug fix

Co-authored-by: John Law <johnlaw.po@gmail.com>
2020-03-04 13:40:28 +01:00

208 lines
6.2 KiB
Python

"""
A binary search Tree
"""
class Node:
def __init__(self, value, parent):
self.value = value
self.parent = parent # Added in order to delete a node easier
self.left = None
self.right = None
def __repr__(self):
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value)
return pformat({"%s" % (self.value): (self.left, self.right)}, indent=1)
class BinarySearchTree:
def __init__(self, root=None):
self.root = root
def __str__(self):
"""
Return a string of all the Nodes using in order traversal
"""
return str(self.root)
def __reassign_nodes(self, node, new_children):
if new_children is not None: # reset its kids
new_children.parent = node.parent
if node.parent is not None: # reset its parent
if self.is_right(node): # If it is the right children
node.parent.right = new_children
else:
node.parent.left = new_children
else:
self.root = new_children
def is_right(self, node):
return node == node.parent.right
def empty(self):
return self.root is None
def __insert(self, value):
"""
Insert a new node in Binary Search Tree with value label
"""
new_node = Node(value, None) # create a new Node
if self.empty(): # if Tree is empty
self.root = new_node # set its root
else: # Tree is not empty
parent_node = self.root # from root
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
parent_node.left = new_node # We insert the new node in a leaf
break
else:
parent_node = parent_node.left
else:
if parent_node.right is None:
parent_node.right = new_node
break
else:
parent_node = parent_node.right
new_node.parent = parent_node
def insert(self, *values):
for value in values:
self.__insert(value)
return self
def search(self, value):
if self.empty():
raise IndexError("Warning: Tree is empty! please use another.")
else:
node = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
node = node.left if value < node.value else node.right
return node
def get_max(self, node=None):
"""
We go deep on the right branch
"""
if node is None:
node = self.root
if not self.empty():
while node.right is not None:
node = node.right
return node
def get_min(self, node=None):
"""
We go deep on the left branch
"""
if node is None:
node = self.root
if not self.empty():
node = self.root
while node.left is not None:
node = node.left
return node
def remove(self, value):
node = self.search(value) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(node, None)
elif node.left is None: # Has only right children
self.__reassign_nodes(node, node.right)
elif node.right is None: # Has only left children
self.__reassign_nodes(node, node.left)
else:
tmp_node = self.get_max(
node.left
) # Gets the max value of the left branch
self.remove(tmp_node.value)
node.value = (
tmp_node.value
) # Assigns the value to the node to delete and keep tree structure
def preorder_traverse(self, node):
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left)
yield from self.preorder_traverse(node.right)
def traversal_tree(self, traversal_function=None):
"""
This function traversal the tree.
You can pass a function to traversal the tree as needed by client code
"""
if traversal_function is None:
return self.preorder_traverse(self.root)
else:
return traversal_function(self.root)
def postorder(curr_node):
"""
postOrder (left, right, self)
"""
node_list = list()
if curr_node is not None:
node_list = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node]
return node_list
def binary_search_tree():
"""
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
>>> t = BinarySearchTree().insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
8 3 1 6 4 7 10 14 13
>>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
1 4 7 6 3 13 14 10 8
>>> BinarySearchTree().search(6)
Traceback (most recent call last):
...
IndexError: Warning: Tree is empty! please use another.
"""
testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
t = BinarySearchTree()
for i in testlist:
t.insert(i)
# Prints all the elements of the list in order traversal
print(t)
if t.search(6) is not None:
print("The value 6 exists")
else:
print("The value 6 doesn't exist")
if t.search(-1) is not None:
print("The value -1 exists")
else:
print("The value -1 doesn't exist")
if not t.empty():
print("Max Value: ", t.get_max().value)
print("Min Value: ", t.get_min().value)
for i in testlist:
t.remove(i)
print(t)
if __name__ == "__main__":
import doctest
doctest.testmod()
# binary_search_tree()