TheAlgorithms-Python/data_structures/stacks/stock_span_problem.py
Caeden 07e991d553
Add pep8-naming to pre-commit hooks and fixes incorrect naming conventions (#7062)
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038)

* refactor: Fix naming conventions (#7038)

* Update arithmetic_analysis/lu_decomposition.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038)

* chore: Fix naming conventions in doctests (#7038)

* fix: Temporarily disable project euler problem 104 (#7069)

* chore: Fix naming conventions in doctests (#7038)

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-13 00:54:20 +02:00

54 lines
1.6 KiB
Python

"""
The stock span problem is a financial problem where we have a series of n daily
price quotes for a stock and we need to calculate span of stock's price for all n days.
The span Si of the stock's price on a given day i is defined as the maximum
number of consecutive days just before the given day, for which the price of the stock
on the current day is less than or equal to its price on the given day.
"""
def calculation_span(price, s):
n = len(price)
# Create a stack and push index of fist element to it
st = []
st.append(0)
# Span value of first element is always 1
s[0] = 1
# Calculate span values for rest of the elements
for i in range(1, n):
# Pop elements from stack while stack is not
# empty and top of stack is smaller than price[i]
while len(st) > 0 and price[st[0]] <= price[i]:
st.pop()
# If stack becomes empty, then price[i] is greater
# than all elements on left of it, i.e. price[0],
# price[1], ..price[i-1]. Else the price[i] is
# greater than elements after top of stack
s[i] = i + 1 if len(st) <= 0 else (i - st[0])
# Push this element to stack
st.append(i)
# A utility function to print elements of array
def print_array(arr, n):
for i in range(0, n):
print(arr[i], end=" ")
# Driver program to test above function
price = [10, 4, 5, 90, 120, 80]
S = [0 for i in range(len(price) + 1)]
# Fill the span values in array S[]
calculation_span(price, S)
# Print the calculated span values
print_array(S, len(price))