TheAlgorithms-Python/arithmetic_analysis/newton_raphson.py
Caeden Perelli-Harris 44b1bcc7c7
Fix failing tests from ruff/newton_raphson (ignore S307 "possibly insecure function") (#8862)
* chore: Fix failing tests (ignore S307 "possibly insecure function")

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix: Move noqa back to right line

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-07-11 11:51:21 +02:00

47 lines
1.5 KiB
Python

# Implementing Newton Raphson method in Python
# Author: Syed Haseeb Shah (github.com/QuantumNovice)
# The Newton-Raphson method (also known as Newton's method) is a way to
# quickly find a good approximation for the root of a real-valued function
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def newton_raphson(
func: str, a: float | Decimal, precision: float = 10**-10
) -> float:
"""Finds root from the point 'a' onwards by Newton-Raphson method
>>> newton_raphson("sin(x)", 2)
3.1415926536808043
>>> newton_raphson("x**2 - 5*x +2", 0.4)
0.4384471871911695
>>> newton_raphson("x**2 - 5", 0.1)
2.23606797749979
>>> newton_raphson("log(x)- 1", 2)
2.718281828458938
"""
x = a
while True:
x = Decimal(x) - (
Decimal(eval(func)) / Decimal(eval(str(diff(func)))) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(func)) < precision: # noqa: S307
return float(x)
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}")
# Find root of polynomial
print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}")
# Find Square Root of 5
print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}")
# Exponential Roots
print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")