TheAlgorithms-Python/data_structures/binary_tree/segment_tree.py
Christian Clauss 89acf5d017 print() is a function just like every other function (#1101)
* print() is a function just like every other function
2019-08-06 12:14:23 +02:00

72 lines
2.2 KiB
Python

from __future__ import print_function
import math
class SegmentTree:
def __init__(self, A):
self.N = len(A)
self.st = [0] * (4 * self.N) # approximate the overall size of segment tree with array N
self.build(1, 0, self.N - 1)
def left(self, idx):
return idx * 2
def right(self, idx):
return idx * 2 + 1
def build(self, idx, l, r):
if l == r:
self.st[idx] = A[l]
else:
mid = (l + r) // 2
self.build(self.left(idx), l, mid)
self.build(self.right(idx), mid + 1, r)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
def update(self, a, b, val):
return self.update_recursive(1, 0, self.N - 1, a - 1, b - 1, val)
def update_recursive(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
if r < a or l > b:
return True
if l == r :
self.st[idx] = val
return True
mid = (l+r)//2
self.update_recursive(self.left(idx), l, mid, a, b, val)
self.update_recursive(self.right(idx), mid+1, r, a, b, val)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
return True
def query(self, a, b):
return self.query_recursive(1, 0, self.N - 1, a - 1, b - 1)
def query_recursive(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
if r < a or l > b:
return -math.inf
if l >= a and r <= b:
return self.st[idx]
mid = (l+r)//2
q1 = self.query_recursive(self.left(idx), l, mid, a, b)
q2 = self.query_recursive(self.right(idx), mid + 1, r, a, b)
return max(q1, q2)
def showData(self):
showList = []
for i in range(1,N+1):
showList += [self.query(i, i)]
print(showList)
if __name__ == '__main__':
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
N = 15
segt = SegmentTree(A)
print(segt.query(4, 6))
print(segt.query(7, 11))
print(segt.query(7, 12))
segt.update(1,3,111)
print(segt.query(1, 15))
segt.update(7,8,235)
segt.showData()