TheAlgorithms-Python/maths/quadratic_equations_complex_numbers.py
CarsonHam 61f3119467
Change occurrences of str.format to f-strings (#4118)
* f-string update rsa_cipher.py

* f-string update rsa_key_generator.py

* f-string update burrows_wheeler.py

* f-string update non_recursive_segment_tree.py

* f-string update red_black_tree.py

* f-string update deque_doubly.py

* f-string update climbing_stairs.py

* f-string update iterating_through_submasks.py

* f-string update knn_sklearn.py

* f-string update 3n_plus_1.py

* f-string update quadratic_equations_complex_numbers.py

* f-string update nth_fibonacci_using_matrix_exponentiation.py

* f-string update sherman_morrison.py

* f-string update levenshtein_distance.py

* fix lines that were too long
2021-02-23 11:23:49 +05:30

39 lines
929 B
Python

from __future__ import annotations
from cmath import sqrt
def quadratic_roots(a: int, b: int, c: int) -> tuple[complex, complex]:
"""
Given the numerical coefficients a, b and c,
calculates the roots for any quadratic equation of the form ax^2 + bx + c
>>> quadratic_roots(a=1, b=3, c=-4)
(1.0, -4.0)
>>> quadratic_roots(5, 6, 1)
(-0.2, -1.0)
>>> quadratic_roots(1, -6, 25)
((3+4j), (3-4j))
"""
if a == 0:
raise ValueError("Coefficient 'a' must not be zero.")
delta = b * b - 4 * a * c
root_1 = (-b + sqrt(delta)) / (2 * a)
root_2 = (-b - sqrt(delta)) / (2 * a)
return (
root_1.real if not root_1.imag else root_1,
root_2.real if not root_2.imag else root_2,
)
def main():
solution1, solution2 = quadratic_roots(a=5, b=6, c=1)
print(f"The solutions are: {solution1} and {solution2}")
if __name__ == "__main__":
main()