TheAlgorithms-Python/maths/miller_rabin.py
Anzo Teh 725834b9bc Added binary exponentiaion with respect to modulo (#1428)
* Added binary exponentiaion with respect to modulo

* Added miller rabin: the probabilistic primality test for large numbers

* Removed unused import

* Added test for miller_rabin

* Add test to binary_exp_mod

* Removed test parameter to make Travis CI happy

* unittest.main()  # doctest: +ELLIPSIS   ...

* Update binary_exp_mod.py

* Update binary_exp_mod.py

* Update miller_rabin.py

* from .prime_check import prime_check

Co-authored-by: Christian Clauss <cclauss@me.com>
2019-12-24 07:23:15 +01:00

51 lines
1.2 KiB
Python

import random
from .binary_exp_mod import bin_exp_mod
# This is a probabilistic check to test primality, useful for big numbers!
# if it's a prime, it will return true
# if it's not a prime, the chance of it returning true is at most 1/4**prec
def is_prime(n, prec=1000):
"""
>>> from .prime_check import prime_check
>>> all(is_prime(i) == prime_check(i) for i in range(1000))
True
"""
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
d = n - 1
exp = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
count = 0
while count < prec:
a = random.randint(2, n - 1)
b = bin_exp_mod(a, d, n)
if b != 1:
flag = True
for i in range(exp):
if b == n - 1:
flag = False
break
b = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
n = abs(int(input("Enter bound : ").strip()))
print("Here's the list of primes:")
print(", ".join(str(i) for i in range(n + 1) if is_prime(i)))