TheAlgorithms-Python/blockchain/modular_division.py
Sushil Singh 9cc9f67d64 Chinese Remainder Theorem | Diophantine Equation | Modular Division (#1248)
* Update .gitignore to remove __pycache__/

* added chinese_remainder_theorem

* Added Diophantine_equation algorithm

* Update Diophantine eqn & chinese remainder theorem

* Update Diophantine eqn & chinese remainder theorem

* added efficient modular division algorithm

* added GCD function

* update chinese_remainder_theorem | dipohantine eqn | modular_division

* update chinese_remainder_theorem | dipohantine eqn | modular_division

* added a new directory named blockchain & a files from data_structures/hashing/number_theory

* added a new directory named blockchain & a files from data_structures/hashing/number_theory
2019-10-06 23:52:04 +05:00

150 lines
3.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Modular Division :
# An efficient algorithm for dividing b by a modulo n.
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
# Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should return an integer x such that
# 0≤x≤n1, and b/a=x(modn) (that is, b=ax(modn)).
# Theorem:
# a has a multiplicative inverse modulo n iff gcd(a,n) = 1
# This find x = b*a^(-1) mod n
# Uses ExtendedEuclid to find the inverse of a
def modular_division(a, b, n):
"""
>>> modular_division(4,8,5)
2
>>> modular_division(3,8,5)
1
>>> modular_division(4, 11, 5)
4
"""
assert n > 1 and a > 0 and greatest_common_divisor(a, n) == 1
(d, t, s) = extended_gcd(n, a) # Implemented below
x = (b * s) % n
return x
# This function find the inverses of a i.e., a^(-1)
def invert_modulo(a, n):
"""
>>> invert_modulo(2, 5)
3
>>> invert_modulo(8,7)
1
"""
(b, x) = extended_euclid(a, n) # Implemented below
if b < 0:
b = (b % n + n) % n
return b
# ------------------ Finding Modular division using invert_modulo -------------------
# This function used the above inversion of a to find x = (b*a^(-1))mod n
def modular_division2(a, b, n):
"""
>>> modular_division2(4,8,5)
2
>>> modular_division2(3,8,5)
1
>>> modular_division2(4, 11, 5)
4
"""
s = invert_modulo(a, n)
x = (b * s) % n
return x
# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b)
def extended_gcd(a, b):
"""
>>> extended_gcd(10, 6)
(2, -1, 2)
>>> extended_gcd(7, 5)
(1, -2, 3)
** extended_gcd function is used when d = gcd(a,b) is required in output
"""
assert a >= 0 and b >= 0
if b == 0:
d, x, y = a, 1, 0
else:
(d, p, q) = extended_gcd(b, a % b)
x = q
y = p - q * (a // b)
assert a % d == 0 and b % d == 0
assert d == a * x + b * y
return (d, x, y)
# Extended Euclid
def extended_euclid(a, b):
"""
>>> extended_euclid(10, 6)
(-1, 2)
>>> extended_euclid(7, 5)
(-2, 3)
"""
if b == 0:
return (1, 0)
(x, y) = extended_euclid(b, a % b)
k = a // b
return (y, x - k * y)
# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b
# Euclid's Algorithm
def greatest_common_divisor(a, b):
"""
>>> greatest_common_divisor(7,5)
1
Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime
if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1.
>>> greatest_common_divisor(121, 11)
11
"""
if a < b:
a, b = b, a
while a % b != 0:
a, b = b, a % b
return b
# Import testmod for testing our function
from doctest import testmod
if __name__ == '__main__':
testmod(name='modular_division', verbose=True)
testmod(name='modular_division2', verbose=True)
testmod(name='invert_modulo', verbose=True)
testmod(name='extended_gcd', verbose=True)
testmod(name='extended_euclid', verbose=True)
testmod(name='greatest_common_divisor', verbose=True)