TheAlgorithms-Python/machine_learning/random_forest_classifier.py.broken.txt
Victor Rodrigues da Silva 3f8b2af14b
Add autoclave cipher (#8029)
* Add autoclave cipher

* Update autoclave with the given suggestions

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fixing errors

* Another fixes

* Update and rename autoclave.py to autokey.py

* Rename gaussian_naive_bayes.py to gaussian_naive_bayes.py.broken.txt

* Rename gradient_boosting_regressor.py to gradient_boosting_regressor.py.broken.txt

* Rename random_forest_classifier.py to random_forest_classifier.py.broken.txt

* Rename random_forest_regressor.py to random_forest_regressor.py.broken.txt

* Rename equal_loudness_filter.py to equal_loudness_filter.py.broken.txt

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
2022-12-18 23:26:39 +01:00

45 lines
1.1 KiB
Plaintext

# Random Forest Classifier Example
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import plot_confusion_matrix
from sklearn.model_selection import train_test_split
def main():
"""
Random Forest Classifier Example using sklearn function.
Iris type dataset is used to demonstrate algorithm.
"""
# Load Iris dataset
iris = load_iris()
# Split dataset into train and test data
x = iris["data"] # features
y = iris["target"]
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.3, random_state=1
)
# Random Forest Classifier
rand_for = RandomForestClassifier(random_state=42, n_estimators=100)
rand_for.fit(x_train, y_train)
# Display Confusion Matrix of Classifier
plot_confusion_matrix(
rand_for,
x_test,
y_test,
display_labels=iris["target_names"],
cmap="Blues",
normalize="true",
)
plt.title("Normalized Confusion Matrix - IRIS Dataset")
plt.show()
if __name__ == "__main__":
main()