TheAlgorithms-Python/maths/PrimeCheck.py
Julien Castiaux 36828b106f [FIX] maths/PrimeCheck (#796)
Current implementation is buggy and hard to read.

* Negative values were raising a TypeError due to `math.sqrt`
* 1 was considered prime, it is not.
* 2 was considered not prime, it is.

The implementation has been corrected to fix the bugs and to enhance
readability.

A docstring has been added with the definition of a prime number.

A complete test suite has been written, it tests the 10 first primes, a
negative value, 0, 1 and some not prime numbers.

closes #795
2019-05-11 19:20:25 +08:00

55 lines
1.6 KiB
Python

import math
import unittest
def primeCheck(number):
"""
A number is prime if it has exactly two dividers: 1 and itself.
"""
if number < 2:
# Negatives, 0 and 1 are not primes
return False
if number < 4:
# 2 and 3 are primes
return True
if number % 2 == 0:
# Even values are not primes
return False
# Except 2, all primes are odd. If any odd value divide
# the number, then that number is not prime.
odd_numbers = range(3, int(math.sqrt(number)) + 1, 2)
return not any(number % i == 0 for i in odd_numbers)
class Test(unittest.TestCase):
def test_primes(self):
self.assertTrue(primeCheck(2))
self.assertTrue(primeCheck(3))
self.assertTrue(primeCheck(5))
self.assertTrue(primeCheck(7))
self.assertTrue(primeCheck(11))
self.assertTrue(primeCheck(13))
self.assertTrue(primeCheck(17))
self.assertTrue(primeCheck(19))
self.assertTrue(primeCheck(23))
self.assertTrue(primeCheck(29))
def test_not_primes(self):
self.assertFalse(primeCheck(-19),
"Negative numbers are not prime.")
self.assertFalse(primeCheck(0),
"Zero doesn't have any divider, primes must have two")
self.assertFalse(primeCheck(1),
"One just have 1 divider, primes must have two.")
self.assertFalse(primeCheck(2 * 2))
self.assertFalse(primeCheck(2 * 3))
self.assertFalse(primeCheck(3 * 3))
self.assertFalse(primeCheck(3 * 5))
self.assertFalse(primeCheck(3 * 5 * 7))
if __name__ == '__main__':
unittest.main()