mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
b092f9979f
* Fixes: #{6551} * Fixes: #{6551} * Update xgboostclassifier.py * Delete xgboostclassifier.py * Update xgboostregressor.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fixes: #{6551} * Fixes : {#6551} * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fixes: {#6551] * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update xgboostregressor.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update xgboostregressor.py * Update xgboostregressor.py * Fixes: { #6551} * Update xgboostregressor.py * Fixes: { #6551} * Fixes: { #6551} * Update and rename xgboostregressor.py to xgboost_regressor.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
65 lines
2.2 KiB
Python
65 lines
2.2 KiB
Python
# XGBoost Regressor Example
|
|
import numpy as np
|
|
from sklearn.datasets import fetch_california_housing
|
|
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
|
from sklearn.model_selection import train_test_split
|
|
from xgboost import XGBRegressor
|
|
|
|
|
|
def data_handling(data: dict) -> tuple:
|
|
# Split dataset into features and target. Data is features.
|
|
"""
|
|
>>> data_handling((
|
|
... {'data':'[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]'
|
|
... ,'target':([4.526])}))
|
|
('[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]', [4.526])
|
|
"""
|
|
return (data["data"], data["target"])
|
|
|
|
|
|
def xgboost(
|
|
features: np.ndarray, target: np.ndarray, test_features: np.ndarray
|
|
) -> np.ndarray:
|
|
"""
|
|
>>> xgboost(np.array([[ 2.3571 , 52. , 6.00813008, 1.06775068,
|
|
... 907. , 2.45799458, 40.58 , -124.26]]),np.array([1.114]),
|
|
... np.array([[1.97840000e+00, 3.70000000e+01, 4.98858447e+00, 1.03881279e+00,
|
|
... 1.14300000e+03, 2.60958904e+00, 3.67800000e+01, -1.19780000e+02]]))
|
|
array([[1.1139996]], dtype=float32)
|
|
"""
|
|
xgb = XGBRegressor(verbosity=0, random_state=42)
|
|
xgb.fit(features, target)
|
|
# Predict target for test data
|
|
predictions = xgb.predict(test_features)
|
|
predictions = predictions.reshape(len(predictions), 1)
|
|
return predictions
|
|
|
|
|
|
def main() -> None:
|
|
"""
|
|
>>> main()
|
|
Mean Absolute Error : 0.30957163379906033
|
|
Mean Square Error : 0.22611560196662744
|
|
|
|
The URL for this algorithm
|
|
https://xgboost.readthedocs.io/en/stable/
|
|
California house price dataset is used to demonstrate the algorithm.
|
|
"""
|
|
# Load California house price dataset
|
|
california = fetch_california_housing()
|
|
data, target = data_handling(california)
|
|
x_train, x_test, y_train, y_test = train_test_split(
|
|
data, target, test_size=0.25, random_state=1
|
|
)
|
|
predictions = xgboost(x_train, y_train, x_test)
|
|
# Error printing
|
|
print(f"Mean Absolute Error : {mean_absolute_error(y_test, predictions)}")
|
|
print(f"Mean Square Error : {mean_squared_error(y_test, predictions)}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod(verbose=True)
|
|
main()
|