TheAlgorithms-Python/project_euler/problem_104/sol.py.FIXME
Caeden 07e991d553
Add pep8-naming to pre-commit hooks and fixes incorrect naming conventions (#7062)
* ci(pre-commit): Add pep8-naming to `pre-commit` hooks (#7038)

* refactor: Fix naming conventions (#7038)

* Update arithmetic_analysis/lu_decomposition.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(lu_decomposition): Replace `NDArray` with `ArrayLike` (#7038)

* chore: Fix naming conventions in doctests (#7038)

* fix: Temporarily disable project euler problem 104 (#7069)

* chore: Fix naming conventions in doctests (#7038)

Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-13 00:54:20 +02:00

138 lines
2.9 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Project Euler Problem 104 : https://projecteuler.net/problem=104
The Fibonacci sequence is defined by the recurrence relation:
Fn = Fn1 + Fn2, where F1 = 1 and F2 = 1.
It turns out that F541, which contains 113 digits, is the first Fibonacci number
for which the last nine digits are 1-9 pandigital (contain all the digits 1 to 9,
but not necessarily in order). And F2749, which contains 575 digits, is the first
Fibonacci number for which the first nine digits are 1-9 pandigital.
Given that Fk is the first Fibonacci number for which the first nine digits AND
the last nine digits are 1-9 pandigital, find k.
"""
def check(number: int) -> bool:
"""
Takes a number and checks if it is pandigital both from start and end
>>> check(123456789987654321)
True
>>> check(120000987654321)
False
>>> check(1234567895765677987654321)
True
"""
check_last = [0] * 11
check_front = [0] * 11
# mark last 9 numbers
for x in range(9):
check_last[int(number % 10)] = 1
number = number // 10
# flag
f = True
# check last 9 numbers for pandigitality
for x in range(9):
if not check_last[x + 1]:
f = False
if not f:
return f
# mark first 9 numbers
number = int(str(number)[:9])
for x in range(9):
check_front[int(number % 10)] = 1
number = number // 10
# check first 9 numbers for pandigitality
for x in range(9):
if not check_front[x + 1]:
f = False
return f
def check1(number: int) -> bool:
"""
Takes a number and checks if it is pandigital from END
>>> check1(123456789987654321)
True
>>> check1(120000987654321)
True
>>> check1(12345678957656779870004321)
False
"""
check_last = [0] * 11
# mark last 9 numbers
for x in range(9):
check_last[int(number % 10)] = 1
number = number // 10
# flag
f = True
# check last 9 numbers for pandigitality
for x in range(9):
if not check_last[x + 1]:
f = False
return f
def solution() -> int:
"""
Outputs the answer is the least Fibonacci number pandigital from both sides.
>>> solution()
329468
"""
a = 1
b = 1
c = 2
# temporary Fibonacci numbers
a1 = 1
b1 = 1
c1 = 2
# temporary Fibonacci numbers mod 1e9
# mod m=1e9, done for fast optimisation
tocheck = [0] * 1000000
m = 1000000000
for x in range(1000000):
c1 = (a1 + b1) % m
a1 = b1 % m
b1 = c1 % m
if check1(b1):
tocheck[x + 3] = 1
for x in range(1000000):
c = a + b
a = b
b = c
# perform check only if in tocheck
if tocheck[x + 3] and check(b):
return x + 3 # first 2 already done
return -1
if __name__ == "__main__":
print(f"{solution() = }")