TheAlgorithms-Python/project_euler/problem_025/sol2.py
Joyce bcfca67faa
[mypy] fix type annotations for all Project Euler problems (#4747)
* [mypy] fix type annotations for problem003/sol1 and problem003/sol3

* [mypy] fix type annotations for project euler problem007/sol2

* [mypy] fix type annotations for project euler problem008/sol2

* [mypy] fix type annotations for project euler problem009/sol1

* [mypy] fix type annotations for project euler problem014/sol1

* [mypy] fix type annotations for project euler problem 025/sol2

* [mypy] fix type annotations for project euler problem026/sol1.py

* [mypy] fix type annotations for project euler problem037/sol1

* [mypy] fix type annotations for project euler problem044/sol1

* [mypy] fix type annotations for project euler problem046/sol1

* [mypy] fix type annotations for project euler problem051/sol1

* [mypy] fix type annotations for project euler problem074/sol2

* [mypy] fix type annotations for project euler problem080/sol1

* [mypy] fix type annotations for project euler problem099/sol1

* [mypy] fix type annotations for project euler problem101/sol1

* [mypy] fix type annotations for project euler problem188/sol1

* [mypy] fix type annotations for project euler problem191/sol1

* [mypy] fix type annotations for project euler problem207/sol1

* [mypy] fix type annotations for project euler problem551/sol1
2021-10-12 00:33:44 +08:00

73 lines
1.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
The Fibonacci sequence is defined by the recurrence relation:
Fn = Fn1 + Fn2, where F1 = 1 and F2 = 1.
Hence the first 12 terms will be:
F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8
F7 = 13
F8 = 21
F9 = 34
F10 = 55
F11 = 89
F12 = 144
The 12th term, F12, is the first term to contain three digits.
What is the index of the first term in the Fibonacci sequence to contain 1000
digits?
"""
from typing import Generator
def fibonacci_generator() -> Generator[int, None, None]:
"""
A generator that produces numbers in the Fibonacci sequence
>>> generator = fibonacci_generator()
>>> next(generator)
1
>>> next(generator)
2
>>> next(generator)
3
>>> next(generator)
5
>>> next(generator)
8
"""
a, b = 0, 1
while True:
a, b = b, a + b
yield b
def solution(n: int = 1000) -> int:
"""Returns the index of the first term in the Fibonacci sequence to contain
n digits.
>>> solution(1000)
4782
>>> solution(100)
476
>>> solution(50)
237
>>> solution(3)
12
"""
answer = 1
gen = fibonacci_generator()
while len(str(next(gen))) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))