TheAlgorithms-Python/data_structures/binary_tree/fenwick_tree.py
2022-11-15 14:55:14 +01:00

248 lines
6.2 KiB
Python

from copy import deepcopy
class FenwickTree:
"""
Fenwick Tree
More info: https://en.wikipedia.org/wiki/Fenwick_tree
"""
def __init__(self, arr: list[int] | None = None, size: int | None = None) -> None:
"""
Constructor for the Fenwick tree
Parameters:
arr (list): list of elements to initialize the tree with (optional)
size (int): size of the Fenwick tree (if arr is None)
"""
if arr is None and size is not None:
self.size = size
self.tree = [0] * size
elif arr is not None:
self.init(arr)
else:
raise ValueError("Either arr or size must be specified")
def init(self, arr: list[int]) -> None:
"""
Initialize the Fenwick tree with arr in O(N)
Parameters:
arr (list): list of elements to initialize the tree with
Returns:
None
>>> a = [1, 2, 3, 4, 5]
>>> f1 = FenwickTree(a)
>>> f2 = FenwickTree(size=len(a))
>>> for index, value in enumerate(a):
... f2.add(index, value)
>>> f1.tree == f2.tree
True
"""
self.size = len(arr)
self.tree = deepcopy(arr)
for i in range(1, self.size):
j = self.next_(i)
if j < self.size:
self.tree[j] += self.tree[i]
def get_array(self) -> list[int]:
"""
Get the Normal Array of the Fenwick tree in O(N)
Returns:
list: Normal Array of the Fenwick tree
>>> a = [i for i in range(128)]
>>> f = FenwickTree(a)
>>> f.get_array() == a
True
"""
arr = self.tree[:]
for i in range(self.size - 1, 0, -1):
j = self.next_(i)
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def next_(index: int) -> int:
return index + (index & (-index))
@staticmethod
def prev(index: int) -> int:
return index - (index & (-index))
def add(self, index: int, value: int) -> None:
"""
Add a value to index in O(lg N)
Parameters:
index (int): index to add value to
value (int): value to add to index
Returns:
None
>>> f = FenwickTree([1, 2, 3, 4, 5])
>>> f.add(0, 1)
>>> f.add(1, 2)
>>> f.add(2, 3)
>>> f.add(3, 4)
>>> f.add(4, 5)
>>> f.get_array()
[2, 4, 6, 8, 10]
"""
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
index = self.next_(index)
def update(self, index: int, value: int) -> None:
"""
Set the value of index in O(lg N)
Parameters:
index (int): index to set value to
value (int): value to set in index
Returns:
None
>>> f = FenwickTree([5, 4, 3, 2, 1])
>>> f.update(0, 1)
>>> f.update(1, 2)
>>> f.update(2, 3)
>>> f.update(3, 4)
>>> f.update(4, 5)
>>> f.get_array()
[1, 2, 3, 4, 5]
"""
self.add(index, value - self.get(index))
def prefix(self, right: int) -> int:
"""
Prefix sum of all elements in [0, right) in O(lg N)
Parameters:
right (int): right bound of the query (exclusive)
Returns:
int: sum of all elements in [0, right)
>>> a = [i for i in range(128)]
>>> f = FenwickTree(a)
>>> res = True
>>> for i in range(len(a)):
... res = res and f.prefix(i) == sum(a[:i])
>>> res
True
"""
if right == 0:
return 0
result = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
right = self.prev(right)
return result
def query(self, left: int, right: int) -> int:
"""
Query the sum of all elements in [left, right) in O(lg N)
Parameters:
left (int): left bound of the query (inclusive)
right (int): right bound of the query (exclusive)
Returns:
int: sum of all elements in [left, right)
>>> a = [i for i in range(128)]
>>> f = FenwickTree(a)
>>> res = True
>>> for i in range(len(a)):
... for j in range(i + 1, len(a)):
... res = res and f.query(i, j) == sum(a[i:j])
>>> res
True
"""
return self.prefix(right) - self.prefix(left)
def get(self, index: int) -> int:
"""
Get value at index in O(lg N)
Parameters:
index (int): index to get the value
Returns:
int: Value of element at index
>>> a = [i for i in range(128)]
>>> f = FenwickTree(a)
>>> res = True
>>> for i in range(len(a)):
... res = res and f.get(i) == a[i]
>>> res
True
"""
return self.query(index, index + 1)
def rank_query(self, value: int) -> int:
"""
Find the largest index with prefix(i) <= value in O(lg N)
NOTE: Requires that all values are non-negative!
Parameters:
value (int): value to find the largest index of
Returns:
-1: if value is smaller than all elements in prefix sum
int: largest index with prefix(i) <= value
>>> f = FenwickTree([1, 2, 0, 3, 0, 5])
>>> f.rank_query(0)
-1
>>> f.rank_query(2)
0
>>> f.rank_query(1)
0
>>> f.rank_query(3)
2
>>> f.rank_query(5)
2
>>> f.rank_query(6)
4
>>> f.rank_query(11)
5
"""
value -= self.tree[0]
if value < 0:
return -1
j = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
i = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()