TheAlgorithms-Python/cellular_automata/game_of_life.py
Tianyi Zheng cc10b20beb
Remove some print statements within algorithmic functions (#7499)
* Remove commented-out print statements in algorithmic functions

* Encapsulate non-algorithmic code in __main__

* Remove unused print_matrix function

* Remove print statement in __init__

* Remove print statement from doctest

* Encapsulate non-algorithmic code in __main__

* Modify algorithm to return instead of print

* Encapsulate non-algorithmic code in __main__

* Refactor data_safety_checker to return instead of print

* updating DIRECTORY.md

* updating DIRECTORY.md

* Apply suggestions from code review

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-22 13:33:51 +02:00

132 lines
3.1 KiB
Python

"""Conway's Game Of Life, Author Anurag Kumar(mailto:anuragkumarak95@gmail.com)
Requirements:
- numpy
- random
- time
- matplotlib
Python:
- 3.5
Usage:
- $python3 game_o_life <canvas_size:int>
Game-Of-Life Rules:
1.
Any live cell with fewer than two live neighbours
dies, as if caused by under-population.
2.
Any live cell with two or three live neighbours lives
on to the next generation.
3.
Any live cell with more than three live neighbours
dies, as if by over-population.
4.
Any dead cell with exactly three live neighbours be-
comes a live cell, as if by reproduction.
"""
import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
usage_doc = "Usage of script: script_nama <size_of_canvas:int>"
choice = [0] * 100 + [1] * 10
random.shuffle(choice)
def create_canvas(size: int) -> list[list[bool]]:
canvas = [[False for i in range(size)] for j in range(size)]
return canvas
def seed(canvas: list[list[bool]]) -> None:
for i, row in enumerate(canvas):
for j, _ in enumerate(row):
canvas[i][j] = bool(random.getrandbits(1))
def run(canvas: list[list[bool]]) -> list[list[bool]]:
"""This function runs the rules of game through all points, and changes their
status accordingly.(in the same canvas)
@Args:
--
canvas : canvas of population to run the rules on.
@returns:
--
None
"""
current_canvas = np.array(canvas)
next_gen_canvas = np.array(create_canvas(current_canvas.shape[0]))
for r, row in enumerate(current_canvas):
for c, pt in enumerate(row):
next_gen_canvas[r][c] = __judge_point(
pt, current_canvas[r - 1 : r + 2, c - 1 : c + 2]
)
current_canvas = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
return_canvas: list[list[bool]] = current_canvas.tolist()
return return_canvas
def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool:
dead = 0
alive = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
state = pt
if pt:
if alive < 2:
state = False
elif alive == 2 or alive == 3:
state = True
elif alive > 3:
state = False
else:
if alive == 3:
state = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
canvas_size = int(sys.argv[1])
# main working structure of this module.
c = create_canvas(canvas_size)
seed(c)
fig, ax = plt.subplots()
fig.show()
cmap = ListedColormap(["w", "k"])
try:
while True:
c = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass