TheAlgorithms-Python/maths/jaccard_similarity.py
Christian Clauss 64543faa98
Make some ruff fixes (#8154)
* Make some ruff fixes

* Undo manual fix

* Undo manual fix

* Updates from ruff=0.0.251
2023-03-01 17:23:33 +01:00

81 lines
2.5 KiB
Python

"""
The Jaccard similarity coefficient is a commonly used indicator of the
similarity between two sets. Let U be a set and A and B be subsets of U,
then the Jaccard index/similarity is defined to be the ratio of the number
of elements of their intersection and the number of elements of their union.
Inspired from Wikipedia and
the book Mining of Massive Datasets [MMDS 2nd Edition, Chapter 3]
https://en.wikipedia.org/wiki/Jaccard_index
https://mmds.org
Jaccard similarity is widely used with MinHashing.
"""
def jaccard_similarity(set_a, set_b, alternative_union=False):
"""
Finds the jaccard similarity between two sets.
Essentially, its intersection over union.
The alternative way to calculate this is to take union as sum of the
number of items in the two sets. This will lead to jaccard similarity
of a set with itself be 1/2 instead of 1. [MMDS 2nd Edition, Page 77]
Parameters:
:set_a (set,list,tuple): A non-empty set/list
:set_b (set,list,tuple): A non-empty set/list
:alternativeUnion (boolean): If True, use sum of number of
items as union
Output:
(float) The jaccard similarity between the two sets.
Examples:
>>> set_a = {'a', 'b', 'c', 'd', 'e'}
>>> set_b = {'c', 'd', 'e', 'f', 'h', 'i'}
>>> jaccard_similarity(set_a, set_b)
0.375
>>> jaccard_similarity(set_a, set_a)
1.0
>>> jaccard_similarity(set_a, set_a, True)
0.5
>>> set_a = ['a', 'b', 'c', 'd', 'e']
>>> set_b = ('c', 'd', 'e', 'f', 'h', 'i')
>>> jaccard_similarity(set_a, set_b)
0.375
"""
if isinstance(set_a, set) and isinstance(set_b, set):
intersection = len(set_a.intersection(set_b))
if alternative_union:
union = len(set_a) + len(set_b)
else:
union = len(set_a.union(set_b))
return intersection / union
if isinstance(set_a, (list, tuple)) and isinstance(set_b, (list, tuple)):
intersection = [element for element in set_a if element in set_b]
if alternative_union:
union = len(set_a) + len(set_b)
return len(intersection) / union
else:
union = set_a + [element for element in set_b if element not in set_a]
return len(intersection) / len(union)
return len(intersection) / len(union)
return None
if __name__ == "__main__":
set_a = {"a", "b", "c", "d", "e"}
set_b = {"c", "d", "e", "f", "h", "i"}
print(jaccard_similarity(set_a, set_b))