TheAlgorithms-Python/matrix/sherman_morrison.py
Caeden Perelli-Harris f15cc2f01c
Follow Flake8 pep3101 and remove modulo formatting (#7339)
* ci: Add ``flake8-pep3101`` plugin to ``pre-commit``

* refactor: Remove all modulo string formatting

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor: Remove ``flake8-pep3101`` plugin from ``pre-commit``

* revert: Revert to modulo formatting

* refactor: Use f-string instead of `join`

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-16 22:50:11 +02:00

265 lines
8.0 KiB
Python

from __future__ import annotations
from typing import Any
class Matrix:
"""
<class Matrix>
Matrix structure.
"""
def __init__(self, row: int, column: int, default_value: float = 0) -> None:
"""
<method Matrix.__init__>
Initialize matrix with given size and default value.
Example:
>>> a = Matrix(2, 3, 1)
>>> a
Matrix consist of 2 rows and 3 columns
[1, 1, 1]
[1, 1, 1]
"""
self.row, self.column = row, column
self.array = [[default_value for c in range(column)] for r in range(row)]
def __str__(self) -> str:
"""
<method Matrix.__str__>
Return string representation of this matrix.
"""
# Prefix
s = f"Matrix consist of {self.row} rows and {self.column} columns\n"
# Make string identifier
max_element_length = 0
for row_vector in self.array:
for obj in row_vector:
max_element_length = max(max_element_length, len(str(obj)))
string_format_identifier = f"%{max_element_length}s"
# Make string and return
def single_line(row_vector: list[float]) -> str:
nonlocal string_format_identifier
line = "["
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector)
line += "]"
return line
s += "\n".join(single_line(row_vector) for row_vector in self.array)
return s
def __repr__(self) -> str:
return str(self)
def validate_indicies(self, loc: tuple[int, int]) -> bool:
"""
<method Matrix.validate_indicies>
Check if given indices are valid to pick element from matrix.
Example:
>>> a = Matrix(2, 6, 0)
>>> a.validate_indicies((2, 7))
False
>>> a.validate_indicies((0, 0))
True
"""
if not (isinstance(loc, (list, tuple)) and len(loc) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__(self, loc: tuple[int, int]) -> Any:
"""
<method Matrix.__getitem__>
Return array[row][column] where loc = (row, column).
Example:
>>> a = Matrix(3, 2, 7)
>>> a[1, 0]
7
"""
assert self.validate_indicies(loc)
return self.array[loc[0]][loc[1]]
def __setitem__(self, loc: tuple[int, int], value: float) -> None:
"""
<method Matrix.__setitem__>
Set array[row][column] = value where loc = (row, column).
Example:
>>> a = Matrix(2, 3, 1)
>>> a[1, 2] = 51
>>> a
Matrix consist of 2 rows and 3 columns
[ 1, 1, 1]
[ 1, 1, 51]
"""
assert self.validate_indicies(loc)
self.array[loc[0]][loc[1]] = value
def __add__(self, another: Matrix) -> Matrix:
"""
<method Matrix.__add__>
Return self + another.
Example:
>>> a = Matrix(2, 1, -4)
>>> b = Matrix(2, 1, 3)
>>> a+b
Matrix consist of 2 rows and 1 columns
[-1]
[-1]
"""
# Validation
assert isinstance(another, Matrix)
assert self.row == another.row and self.column == another.column
# Add
result = Matrix(self.row, self.column)
for r in range(self.row):
for c in range(self.column):
result[r, c] = self[r, c] + another[r, c]
return result
def __neg__(self) -> Matrix:
"""
<method Matrix.__neg__>
Return -self.
Example:
>>> a = Matrix(2, 2, 3)
>>> a[0, 1] = a[1, 0] = -2
>>> -a
Matrix consist of 2 rows and 2 columns
[-3, 2]
[ 2, -3]
"""
result = Matrix(self.row, self.column)
for r in range(self.row):
for c in range(self.column):
result[r, c] = -self[r, c]
return result
def __sub__(self, another: Matrix) -> Matrix:
return self + (-another)
def __mul__(self, another: int | float | Matrix) -> Matrix:
"""
<method Matrix.__mul__>
Return self * another.
Example:
>>> a = Matrix(2, 3, 1)
>>> a[0,2] = a[1,2] = 3
>>> a * -2
Matrix consist of 2 rows and 3 columns
[-2, -2, -6]
[-2, -2, -6]
"""
if isinstance(another, (int, float)): # Scalar multiplication
result = Matrix(self.row, self.column)
for r in range(self.row):
for c in range(self.column):
result[r, c] = self[r, c] * another
return result
elif isinstance(another, Matrix): # Matrix multiplication
assert self.column == another.row
result = Matrix(self.row, another.column)
for r in range(self.row):
for c in range(another.column):
for i in range(self.column):
result[r, c] += self[r, i] * another[i, c]
return result
else:
raise TypeError(f"Unsupported type given for another ({type(another)})")
def transpose(self) -> Matrix:
"""
<method Matrix.transpose>
Return self^T.
Example:
>>> a = Matrix(2, 3)
>>> for r in range(2):
... for c in range(3):
... a[r,c] = r*c
...
>>> a.transpose()
Matrix consist of 3 rows and 2 columns
[0, 0]
[0, 1]
[0, 2]
"""
result = Matrix(self.column, self.row)
for r in range(self.row):
for c in range(self.column):
result[c, r] = self[r, c]
return result
def sherman_morrison(self, u: Matrix, v: Matrix) -> Any:
"""
<method Matrix.sherman_morrison>
Apply Sherman-Morrison formula in O(n^2).
To learn this formula, please look this:
https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
This method returns (A + uv^T)^(-1) where A^(-1) is self. Returns None if it's
impossible to calculate.
Warning: This method doesn't check if self is invertible.
Make sure self is invertible before execute this method.
Example:
>>> ainv = Matrix(3, 3, 0)
>>> for i in range(3): ainv[i,i] = 1
...
>>> u = Matrix(3, 1, 0)
>>> u[0,0], u[1,0], u[2,0] = 1, 2, -3
>>> v = Matrix(3, 1, 0)
>>> v[0,0], v[1,0], v[2,0] = 4, -2, 5
>>> ainv.sherman_morrison(u, v)
Matrix consist of 3 rows and 3 columns
[ 1.2857142857142856, -0.14285714285714285, 0.3571428571428571]
[ 0.5714285714285714, 0.7142857142857143, 0.7142857142857142]
[ -0.8571428571428571, 0.42857142857142855, -0.0714285714285714]
"""
# Size validation
assert isinstance(u, Matrix) and isinstance(v, Matrix)
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
v_t = v.transpose()
numerator_factor = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def test1() -> None:
# a^(-1)
ainv = Matrix(3, 3, 0)
for i in range(3):
ainv[i, i] = 1
print(f"a^(-1) is {ainv}")
# u, v
u = Matrix(3, 1, 0)
u[0, 0], u[1, 0], u[2, 0] = 1, 2, -3
v = Matrix(3, 1, 0)
v[0, 0], v[1, 0], v[2, 0] = 4, -2, 5
print(f"u is {u}")
print(f"v is {v}")
print(f"uv^T is {u * v.transpose()}")
# Sherman Morrison
print(f"(a + uv^T)^(-1) is {ainv.sherman_morrison(u, v)}")
def test2() -> None:
import doctest
doctest.testmod()
test2()