TheAlgorithms-Python/dynamic_programming/longest_increasing_subsequence.py

42 lines
1.3 KiB
Python

'''
Author : Mehdi ALAOUI
This is a pure Python implementation of Dynamic Programming solution to the longest increasing subsequence of a given sequence.
The problem is :
Given an ARRAY, to find the longest and increasing sub ARRAY in that given ARRAY and return it.
Example: [10, 22, 9, 33, 21, 50, 41, 60, 80] as input will return [10, 22, 33, 41, 60, 80] as output
'''
from __future__ import print_function
def longestSub(ARRAY): #This function is recursive
ARRAY_LENGTH = len(ARRAY)
if(ARRAY_LENGTH <= 1): #If the array contains only one element, we return it (it's the stop condition of recursion)
return ARRAY
#Else
PIVOT=ARRAY[0]
isFound=False
i=1
LONGEST_SUB=[]
while(not isFound and i<ARRAY_LENGTH):
if (ARRAY[i] < PIVOT):
isFound=True
TEMPORARY_ARRAY = [ element for element in ARRAY[i:] if element >= ARRAY[i] ]
TEMPORARY_ARRAY = longestSub(TEMPORARY_ARRAY)
if ( len(TEMPORARY_ARRAY) > len(LONGEST_SUB) ):
LONGEST_SUB = TEMPORARY_ARRAY
else:
i+=1
TEMPORARY_ARRAY = [ element for element in ARRAY[1:] if element >= PIVOT ]
TEMPORARY_ARRAY = [PIVOT] + longestSub(TEMPORARY_ARRAY)
if ( len(TEMPORARY_ARRAY) > len(LONGEST_SUB) ):
return TEMPORARY_ARRAY
else:
return LONGEST_SUB
#Some examples
print(longestSub([4,8,7,5,1,12,2,3,9]))
print(longestSub([9,8,7,6,5,7]))