TheAlgorithms-Python/graphs/breadth_first_search_shortest_path.py
Christian Clauss 4b79d771cd
Add more ruff rules (#8767)
* Add more ruff rules

* Add more ruff rules

* pre-commit: Update ruff v0.0.269 -> v0.0.270

* Apply suggestions from code review

* Fix doctest

* Fix doctest (ignore whitespace)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-05-26 09:34:17 +02:00

90 lines
2.9 KiB
Python

"""Breath First Search (BFS) can be used when finding the shortest path
from a given source node to a target node in an unweighted graph.
"""
from __future__ import annotations
graph = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
class Graph:
def __init__(self, graph: dict[str, list[str]], source_vertex: str) -> None:
"""
Graph is implemented as dictionary of adjacency lists. Also,
Source vertex have to be defined upon initialization.
"""
self.graph = graph
# mapping node to its parent in resulting breadth first tree
self.parent: dict[str, str | None] = {}
self.source_vertex = source_vertex
def breath_first_search(self) -> None:
"""
This function is a helper for running breath first search on this graph.
>>> g = Graph(graph, "G")
>>> g.breath_first_search()
>>> g.parent
{'G': None, 'C': 'G', 'A': 'C', 'F': 'C', 'B': 'A', 'E': 'A', 'D': 'B'}
"""
visited = {self.source_vertex}
self.parent[self.source_vertex] = None
queue = [self.source_vertex] # first in first out queue
while queue:
vertex = queue.pop(0)
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(adjacent_vertex)
self.parent[adjacent_vertex] = vertex
queue.append(adjacent_vertex)
def shortest_path(self, target_vertex: str) -> str:
"""
This shortest path function returns a string, describing the result:
1.) No path is found. The string is a human readable message to indicate this.
2.) The shortest path is found. The string is in the form
`v1(->v2->v3->...->vn)`, where v1 is the source vertex and vn is the target
vertex, if it exists separately.
>>> g = Graph(graph, "G")
>>> g.breath_first_search()
Case 1 - No path is found.
>>> g.shortest_path("Foo")
Traceback (most recent call last):
...
ValueError: No path from vertex: G to vertex: Foo
Case 2 - The path is found.
>>> g.shortest_path("D")
'G->C->A->B->D'
>>> g.shortest_path("G")
'G'
"""
if target_vertex == self.source_vertex:
return self.source_vertex
target_vertex_parent = self.parent.get(target_vertex)
if target_vertex_parent is None:
msg = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(msg)
return self.shortest_path(target_vertex_parent) + f"->{target_vertex}"
if __name__ == "__main__":
g = Graph(graph, "G")
g.breath_first_search()
print(g.shortest_path("D"))
print(g.shortest_path("G"))
print(g.shortest_path("Foo"))