mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
0070739233
* Replacing the generator with numpy vector operations from lu_decomposition.
* Revert "Replacing the generator with numpy vector operations from lu_decomposition."
This reverts commit ad217c6616
.
* the change removes the warning:
/home/runner/work/Python/Python/machine_learning/k_means_clust.py:236: FutureWarning: The provided callable <function sum at 0x7f20c02034c0> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
.agg(
And
/home/runner/work/Python/Python/machine_learning/k_means_clust.py:236: FutureWarning: The provided callable <function mean at 0x7f3d7db1c5e0> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
.agg(
346 lines
12 KiB
Python
346 lines
12 KiB
Python
"""README, Author - Anurag Kumar(mailto:anuragkumarak95@gmail.com)
|
|
Requirements:
|
|
- sklearn
|
|
- numpy
|
|
- matplotlib
|
|
Python:
|
|
- 3.5
|
|
Inputs:
|
|
- X , a 2D numpy array of features.
|
|
- k , number of clusters to create.
|
|
- initial_centroids , initial centroid values generated by utility function(mentioned
|
|
in usage).
|
|
- maxiter , maximum number of iterations to process.
|
|
- heterogeneity , empty list that will be filled with heterogeneity values if passed
|
|
to kmeans func.
|
|
Usage:
|
|
1. define 'k' value, 'X' features array and 'heterogeneity' empty list
|
|
2. create initial_centroids,
|
|
initial_centroids = get_initial_centroids(
|
|
X,
|
|
k,
|
|
seed=0 # seed value for initial centroid generation,
|
|
# None for randomness(default=None)
|
|
)
|
|
3. find centroids and clusters using kmeans function.
|
|
centroids, cluster_assignment = kmeans(
|
|
X,
|
|
k,
|
|
initial_centroids,
|
|
maxiter=400,
|
|
record_heterogeneity=heterogeneity,
|
|
verbose=True # whether to print logs in console or not.(default=False)
|
|
)
|
|
4. Plot the loss function and heterogeneity values for every iteration saved in
|
|
heterogeneity list.
|
|
plot_heterogeneity(
|
|
heterogeneity,
|
|
k
|
|
)
|
|
5. Transfers Dataframe into excel format it must have feature called
|
|
'Clust' with k means clustering numbers in it.
|
|
"""
|
|
import warnings
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
from matplotlib import pyplot as plt
|
|
from sklearn.metrics import pairwise_distances
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
TAG = "K-MEANS-CLUST/ "
|
|
|
|
|
|
def get_initial_centroids(data, k, seed=None):
|
|
"""Randomly choose k data points as initial centroids"""
|
|
if seed is not None: # useful for obtaining consistent results
|
|
np.random.seed(seed)
|
|
n = data.shape[0] # number of data points
|
|
|
|
# Pick K indices from range [0, N).
|
|
rand_indices = np.random.randint(0, n, k)
|
|
|
|
# Keep centroids as dense format, as many entries will be nonzero due to averaging.
|
|
# As long as at least one document in a cluster contains a word,
|
|
# it will carry a nonzero weight in the TF-IDF vector of the centroid.
|
|
centroids = data[rand_indices, :]
|
|
|
|
return centroids
|
|
|
|
|
|
def centroid_pairwise_dist(x, centroids):
|
|
return pairwise_distances(x, centroids, metric="euclidean")
|
|
|
|
|
|
def assign_clusters(data, centroids):
|
|
# Compute distances between each data point and the set of centroids:
|
|
# Fill in the blank (RHS only)
|
|
distances_from_centroids = centroid_pairwise_dist(data, centroids)
|
|
|
|
# Compute cluster assignments for each data point:
|
|
# Fill in the blank (RHS only)
|
|
cluster_assignment = np.argmin(distances_from_centroids, axis=1)
|
|
|
|
return cluster_assignment
|
|
|
|
|
|
def revise_centroids(data, k, cluster_assignment):
|
|
new_centroids = []
|
|
for i in range(k):
|
|
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
|
|
member_data_points = data[cluster_assignment == i]
|
|
# Compute the mean of the data points. Fill in the blank (RHS only)
|
|
centroid = member_data_points.mean(axis=0)
|
|
new_centroids.append(centroid)
|
|
new_centroids = np.array(new_centroids)
|
|
|
|
return new_centroids
|
|
|
|
|
|
def compute_heterogeneity(data, k, centroids, cluster_assignment):
|
|
heterogeneity = 0.0
|
|
for i in range(k):
|
|
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
|
|
member_data_points = data[cluster_assignment == i, :]
|
|
|
|
if member_data_points.shape[0] > 0: # check if i-th cluster is non-empty
|
|
# Compute distances from centroid to data points (RHS only)
|
|
distances = pairwise_distances(
|
|
member_data_points, [centroids[i]], metric="euclidean"
|
|
)
|
|
squared_distances = distances**2
|
|
heterogeneity += np.sum(squared_distances)
|
|
|
|
return heterogeneity
|
|
|
|
|
|
def plot_heterogeneity(heterogeneity, k):
|
|
plt.figure(figsize=(7, 4))
|
|
plt.plot(heterogeneity, linewidth=4)
|
|
plt.xlabel("# Iterations")
|
|
plt.ylabel("Heterogeneity")
|
|
plt.title(f"Heterogeneity of clustering over time, K={k:d}")
|
|
plt.rcParams.update({"font.size": 16})
|
|
plt.show()
|
|
|
|
|
|
def kmeans(
|
|
data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False
|
|
):
|
|
"""This function runs k-means on given data and initial set of centroids.
|
|
maxiter: maximum number of iterations to run.(default=500)
|
|
record_heterogeneity: (optional) a list, to store the history of heterogeneity
|
|
as function of iterations
|
|
if None, do not store the history.
|
|
verbose: if True, print how many data points changed their cluster labels in
|
|
each iteration"""
|
|
centroids = initial_centroids[:]
|
|
prev_cluster_assignment = None
|
|
|
|
for itr in range(maxiter):
|
|
if verbose:
|
|
print(itr, end="")
|
|
|
|
# 1. Make cluster assignments using nearest centroids
|
|
cluster_assignment = assign_clusters(data, centroids)
|
|
|
|
# 2. Compute a new centroid for each of the k clusters, averaging all data
|
|
# points assigned to that cluster.
|
|
centroids = revise_centroids(data, k, cluster_assignment)
|
|
|
|
# Check for convergence: if none of the assignments changed, stop
|
|
if (
|
|
prev_cluster_assignment is not None
|
|
and (prev_cluster_assignment == cluster_assignment).all()
|
|
):
|
|
break
|
|
|
|
# Print number of new assignments
|
|
if prev_cluster_assignment is not None:
|
|
num_changed = np.sum(prev_cluster_assignment != cluster_assignment)
|
|
if verbose:
|
|
print(
|
|
f" {num_changed:5d} elements changed their cluster assignment."
|
|
)
|
|
|
|
# Record heterogeneity convergence metric
|
|
if record_heterogeneity is not None:
|
|
# YOUR CODE HERE
|
|
score = compute_heterogeneity(data, k, centroids, cluster_assignment)
|
|
record_heterogeneity.append(score)
|
|
|
|
prev_cluster_assignment = cluster_assignment[:]
|
|
|
|
return centroids, cluster_assignment
|
|
|
|
|
|
# Mock test below
|
|
if False: # change to true to run this test case.
|
|
from sklearn import datasets as ds
|
|
|
|
dataset = ds.load_iris()
|
|
k = 3
|
|
heterogeneity = []
|
|
initial_centroids = get_initial_centroids(dataset["data"], k, seed=0)
|
|
centroids, cluster_assignment = kmeans(
|
|
dataset["data"],
|
|
k,
|
|
initial_centroids,
|
|
maxiter=400,
|
|
record_heterogeneity=heterogeneity,
|
|
verbose=True,
|
|
)
|
|
plot_heterogeneity(heterogeneity, k)
|
|
|
|
|
|
def report_generator(
|
|
df: pd.DataFrame, clustering_variables: np.ndarray, fill_missing_report=None
|
|
) -> pd.DataFrame:
|
|
"""
|
|
Generates a clustering report. This function takes 2 arguments as input:
|
|
df - dataframe with predicted cluster column
|
|
fill_missing_report - dictionary of rules on how we are going to fill in missing
|
|
values for final generated report (not included in modelling);
|
|
>>> data = pd.DataFrame()
|
|
>>> data['numbers'] = [1, 2, 3]
|
|
>>> data['col1'] = [0.5, 2.5, 4.5]
|
|
>>> data['col2'] = [100, 200, 300]
|
|
>>> data['col3'] = [10, 20, 30]
|
|
>>> data['Cluster'] = [1, 1, 2]
|
|
>>> report_generator(data, ['col1', 'col2'], 0)
|
|
Features Type Mark 1 2
|
|
0 # of Customers ClusterSize False 2.000000 1.000000
|
|
1 % of Customers ClusterProportion False 0.666667 0.333333
|
|
2 col1 mean_with_zeros True 1.500000 4.500000
|
|
3 col2 mean_with_zeros True 150.000000 300.000000
|
|
4 numbers mean_with_zeros False 1.500000 3.000000
|
|
.. ... ... ... ... ...
|
|
99 dummy 5% False 1.000000 1.000000
|
|
100 dummy 95% False 1.000000 1.000000
|
|
101 dummy stdev False 0.000000 NaN
|
|
102 dummy mode False 1.000000 1.000000
|
|
103 dummy median False 1.000000 1.000000
|
|
<BLANKLINE>
|
|
[104 rows x 5 columns]
|
|
"""
|
|
# Fill missing values with given rules
|
|
if fill_missing_report:
|
|
df = df.fillna(value=fill_missing_report)
|
|
df["dummy"] = 1
|
|
numeric_cols = df.select_dtypes(np.number).columns
|
|
report = (
|
|
df.groupby(["Cluster"])[ # construct report dataframe
|
|
numeric_cols
|
|
] # group by cluster number
|
|
.agg(
|
|
[
|
|
("sum", "sum"),
|
|
("mean_with_zeros", lambda x: np.mean(np.nan_to_num(x))),
|
|
("mean_without_zeros", lambda x: x.replace(0, np.NaN).mean()),
|
|
(
|
|
"mean_25-75",
|
|
lambda x: np.mean(
|
|
np.nan_to_num(
|
|
sorted(x)[
|
|
round(len(x) * 25 / 100) : round(len(x) * 75 / 100)
|
|
]
|
|
)
|
|
),
|
|
),
|
|
("mean_with_na", "mean"),
|
|
("min", lambda x: x.min()),
|
|
("5%", lambda x: x.quantile(0.05)),
|
|
("25%", lambda x: x.quantile(0.25)),
|
|
("50%", lambda x: x.quantile(0.50)),
|
|
("75%", lambda x: x.quantile(0.75)),
|
|
("95%", lambda x: x.quantile(0.95)),
|
|
("max", lambda x: x.max()),
|
|
("count", lambda x: x.count()),
|
|
("stdev", lambda x: x.std()),
|
|
("mode", lambda x: x.mode()[0]),
|
|
("median", lambda x: x.median()),
|
|
("# > 0", lambda x: (x > 0).sum()),
|
|
]
|
|
)
|
|
.T.reset_index()
|
|
.rename(index=str, columns={"level_0": "Features", "level_1": "Type"})
|
|
) # rename columns
|
|
# calculate the size of cluster(count of clientID's)
|
|
clustersize = report[
|
|
(report["Features"] == "dummy") & (report["Type"] == "count")
|
|
].copy() # avoid SettingWithCopyWarning
|
|
clustersize.Type = (
|
|
"ClusterSize" # rename created cluster df to match report column names
|
|
)
|
|
clustersize.Features = "# of Customers"
|
|
clusterproportion = pd.DataFrame(
|
|
clustersize.iloc[:, 2:].values
|
|
/ clustersize.iloc[:, 2:].values.sum() # calculating the proportion of cluster
|
|
)
|
|
clusterproportion[
|
|
"Type"
|
|
] = "% of Customers" # rename created cluster df to match report column names
|
|
clusterproportion["Features"] = "ClusterProportion"
|
|
cols = clusterproportion.columns.tolist()
|
|
cols = cols[-2:] + cols[:-2]
|
|
clusterproportion = clusterproportion[cols] # rearrange columns to match report
|
|
clusterproportion.columns = report.columns
|
|
a = pd.DataFrame(
|
|
abs(
|
|
report[report["Type"] == "count"].iloc[:, 2:].values
|
|
- clustersize.iloc[:, 2:].values
|
|
)
|
|
) # generating df with count of nan values
|
|
a["Features"] = 0
|
|
a["Type"] = "# of nan"
|
|
a.Features = report[
|
|
report["Type"] == "count"
|
|
].Features.tolist() # filling values in order to match report
|
|
cols = a.columns.tolist()
|
|
cols = cols[-2:] + cols[:-2]
|
|
a = a[cols] # rearrange columns to match report
|
|
a.columns = report.columns # rename columns to match report
|
|
report = report.drop(
|
|
report[report.Type == "count"].index
|
|
) # drop count values except for cluster size
|
|
report = pd.concat(
|
|
[report, a, clustersize, clusterproportion], axis=0
|
|
) # concat report with cluster size and nan values
|
|
report["Mark"] = report["Features"].isin(clustering_variables)
|
|
cols = report.columns.tolist()
|
|
cols = cols[0:2] + cols[-1:] + cols[2:-1]
|
|
report = report[cols]
|
|
sorter1 = {
|
|
"ClusterSize": 9,
|
|
"ClusterProportion": 8,
|
|
"mean_with_zeros": 7,
|
|
"mean_with_na": 6,
|
|
"max": 5,
|
|
"50%": 4,
|
|
"min": 3,
|
|
"25%": 2,
|
|
"75%": 1,
|
|
"# of nan": 0,
|
|
"# > 0": -1,
|
|
"sum_with_na": -2,
|
|
}
|
|
report = (
|
|
report.assign(
|
|
Sorter1=lambda x: x.Type.map(sorter1),
|
|
Sorter2=lambda x: list(reversed(range(len(x)))),
|
|
)
|
|
.sort_values(["Sorter1", "Mark", "Sorter2"], ascending=False)
|
|
.drop(["Sorter1", "Sorter2"], axis=1)
|
|
)
|
|
report.columns.name = ""
|
|
report = report.reset_index()
|
|
report = report.drop(columns=["index"])
|
|
return report
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|