TheAlgorithms-Python/project_euler/problem_044/sol1.py
Joyce bcfca67faa
[mypy] fix type annotations for all Project Euler problems (#4747)
* [mypy] fix type annotations for problem003/sol1 and problem003/sol3

* [mypy] fix type annotations for project euler problem007/sol2

* [mypy] fix type annotations for project euler problem008/sol2

* [mypy] fix type annotations for project euler problem009/sol1

* [mypy] fix type annotations for project euler problem014/sol1

* [mypy] fix type annotations for project euler problem 025/sol2

* [mypy] fix type annotations for project euler problem026/sol1.py

* [mypy] fix type annotations for project euler problem037/sol1

* [mypy] fix type annotations for project euler problem044/sol1

* [mypy] fix type annotations for project euler problem046/sol1

* [mypy] fix type annotations for project euler problem051/sol1

* [mypy] fix type annotations for project euler problem074/sol2

* [mypy] fix type annotations for project euler problem080/sol1

* [mypy] fix type annotations for project euler problem099/sol1

* [mypy] fix type annotations for project euler problem101/sol1

* [mypy] fix type annotations for project euler problem188/sol1

* [mypy] fix type annotations for project euler problem191/sol1

* [mypy] fix type annotations for project euler problem207/sol1

* [mypy] fix type annotations for project euler problem551/sol1
2021-10-12 00:33:44 +08:00

50 lines
1.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Problem 44: https://projecteuler.net/problem=44
Pentagonal numbers are generated by the formula, Pn=n(3n1)/2. The first ten
pentagonal numbers are:
1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ...
It can be seen that P4 + P7 = 22 + 70 = 92 = P8. However, their difference,
70 22 = 48, is not pentagonal.
Find the pair of pentagonal numbers, Pj and Pk, for which their sum and difference
are pentagonal and D = |Pk Pj| is minimised; what is the value of D?
"""
def is_pentagonal(n: int) -> bool:
"""
Returns True if n is pentagonal, False otherwise.
>>> is_pentagonal(330)
True
>>> is_pentagonal(7683)
False
>>> is_pentagonal(2380)
True
"""
root = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def solution(limit: int = 5000) -> int:
"""
Returns the minimum difference of two pentagonal numbers P1 and P2 such that
P1 + P2 is pentagonal and P2 - P1 is pentagonal.
>>> solution(5000)
5482660
"""
pentagonal_nums = [(i * (3 * i - 1)) // 2 for i in range(1, limit)]
for i, pentagonal_i in enumerate(pentagonal_nums):
for j in range(i, len(pentagonal_nums)):
pentagonal_j = pentagonal_nums[j]
a = pentagonal_i + pentagonal_j
b = pentagonal_j - pentagonal_i
if is_pentagonal(a) and is_pentagonal(b):
return b
return -1
if __name__ == "__main__":
print(f"{solution() = }")