TheAlgorithms-Python/project_euler/problem_032/sol32.py
Dhruv 44254cf112
Rename Project Euler directories and other dependent changes (#3300)
* Rename all Project Euler directories:

Reason:
The change was done to maintain consistency throughout the directory
and to keep all directories in sorted order.

Due to the above change, some config files had to be modified:
'problem_22` -> `problem_022`

* Update scripts to pad zeroes in PE directories
2020-10-15 12:43:28 +05:30

59 lines
1.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
We shall say that an n-digit number is pandigital if it makes use of all the
digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1 through
5 pandigital.
The product 7254 is unusual, as the identity, 39 × 186 = 7254, containing
multiplicand, multiplier, and product is 1 through 9 pandigital.
Find the sum of all products whose multiplicand/multiplier/product identity can
be written as a 1 through 9 pandigital.
HINT: Some products can be obtained in more than one way so be sure to only
include it once in your sum.
"""
import itertools
def isCombinationValid(combination):
"""
Checks if a combination (a tuple of 9 digits)
is a valid product equation.
>>> isCombinationValid(('3', '9', '1', '8', '6', '7', '2', '5', '4'))
True
>>> isCombinationValid(('1', '2', '3', '4', '5', '6', '7', '8', '9'))
False
"""
return (
int("".join(combination[0:2])) * int("".join(combination[2:5]))
== int("".join(combination[5:9]))
) or (
int("".join(combination[0])) * int("".join(combination[1:5]))
== int("".join(combination[5:9]))
)
def solution():
"""
Finds the sum of all products whose multiplicand/multiplier/product identity
can be written as a 1 through 9 pandigital
>>> solution()
45228
"""
return sum(
{
int("".join(pandigital[5:9]))
for pandigital in itertools.permutations("123456789")
if isCombinationValid(pandigital)
}
)
if __name__ == "__main__":
print(solution())