mirror of
https://hub.njuu.cf/TheAlgorithms/Python.git
synced 2023-10-11 13:06:12 +08:00
861a8c3631
* Add Lucas_Lehmer_primality_test * Add explanation for Lucas_Lehmer_primality_test * Update and rename Lucas_Lehmer_primality_test.py to lucas_lehmer_primality_test.py
43 lines
1.1 KiB
Python
43 lines
1.1 KiB
Python
# -*- coding: utf-8 -*-
|
||
"""
|
||
In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers.
|
||
https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test
|
||
|
||
A Mersenne number is a number that is one less than a power of two.
|
||
That is M_p = 2^p - 1
|
||
https://en.wikipedia.org/wiki/Mersenne_prime
|
||
|
||
The Lucas–Lehmer test is the primality test used by the
|
||
Great Internet Mersenne Prime Search (GIMPS) to locate large primes.
|
||
"""
|
||
|
||
|
||
# Primality test 2^p - 1
|
||
# Return true if 2^p - 1 is prime
|
||
def lucas_lehmer_test(p: int) -> bool:
|
||
"""
|
||
>>> lucas_lehmer_test(p=7)
|
||
True
|
||
|
||
>>> lucas_lehmer_test(p=11)
|
||
False
|
||
|
||
# M_11 = 2^11 - 1 = 2047 = 23 * 89
|
||
"""
|
||
|
||
if p < 2:
|
||
raise ValueError("p should not be less than 2!")
|
||
elif p == 2:
|
||
return True
|
||
|
||
s = 4
|
||
M = (1 << p) - 1
|
||
for i in range(p - 2):
|
||
s = ((s * s) - 2) % M
|
||
return s == 0
|
||
|
||
|
||
if __name__ == "__main__":
|
||
print(lucas_lehmer_test(7))
|
||
print(lucas_lehmer_test(11))
|