TheAlgorithms-Python/maths/chudnovsky_algorithm.py
TheSuperNoob f0dfc4f46d
Add Chudnovskys algorithm for calculating many digits of pi (#1752)
* Add Chudnovskys algorithm for calculating many digits of pi

* Update return value type hint

* Initialize partial sum to be of type Decimal

* Update chudnovsky_algorithm.py

Co-authored-by: Christian Clauss <cclauss@me.com>
2020-02-12 15:04:59 +01:00

62 lines
2.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from decimal import Decimal, getcontext
from math import ceil, factorial
def pi(precision: int) -> str:
"""
The Chudnovsky algorithm is a fast method for calculating the digits of PI,
based on Ramanujans PI formulae.
https://en.wikipedia.org/wiki/Chudnovsky_algorithm
PI = constant_term / ((multinomial_term * linear_term) / exponential_term)
where constant_term = 426880 * sqrt(10005)
The linear_term and the exponential_term can be defined iteratively as follows:
L_k+1 = L_k + 545140134 where L_0 = 13591409
X_k+1 = X_k * -262537412640768000 where X_0 = 1
The multinomial_term is defined as follows:
6k! / ((3k)! * (k!) ^ 3)
where k is the k_th iteration.
This algorithm correctly calculates around 14 digits of PI per iteration
>>> pi(10)
'3.14159265'
>>> pi(100)
'3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706'
>>> pi('hello')
Traceback (most recent call last):
...
TypeError: Undefined for non-integers
>>> pi(-1)
Traceback (most recent call last):
...
ValueError: Undefined for non-natural numbers
"""
if not isinstance(precision, int):
raise TypeError("Undefined for non-integers")
elif precision < 1:
raise ValueError("Undefined for non-natural numbers")
getcontext().prec = precision
num_iterations = ceil(precision / 14)
constant_term = 426880 * Decimal(10005).sqrt()
multinomial_term = 1
exponential_term = 1
linear_term = 13591409
partial_sum = Decimal(linear_term)
for k in range(1, num_iterations):
multinomial_term = factorial(6 * k) // (factorial(3 * k) * factorial(k) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term) / exponential_term
return str(constant_term / partial_sum)[:-1]
if __name__ == "__main__":
n = 50
print(f"The first {n} digits of pi is: {pi(n)}")