TheAlgorithms-Python/quantum/single_qubit_measure.py
Tianyi Zheng 2859d4bf3a
Remove references to depreciated QasmSimulator (#7417)
* Fix typos

* Replace depreciated QasmSimulator in Deutsch-Jozsa algorithm

* Replace depreciated QasmSimulator in half adder algorithm

* Replace depreciated QasmSimulator in not gate algorithm

* Replace depreciated QasmSimulator in full adder algorithm

* Simplify qiskit import

* Make formatting more consistent

* Replace depreciated QasmSimulator in quantum entanglement algorithm

* Replace depreciated QasmSimulator in ripple adder algorithm

* Replace depreciated QasmSimulator in qubit measure algorithm

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* updating DIRECTORY.md

* updating DIRECTORY.md

* Remove qiskit import alias for clarity

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
2022-10-19 22:12:44 +02:00

37 lines
1.1 KiB
Python
Executable File

#!/usr/bin/env python3
"""
Build a simple bare-minimum quantum circuit that starts with a single
qubit (by default, in state 0), runs the experiment 1000 times, and
finally prints the total count of the states finally observed.
Qiskit Docs: https://qiskit.org/documentation/getting_started.html
"""
import qiskit
def single_qubit_measure(
qubits: int, classical_bits: int
) -> qiskit.result.counts.Counts:
"""
>>> single_qubit_measure(1, 1)
{'0': 1000}
"""
# Use Aer's simulator
simulator = qiskit.Aer.get_backend("aer_simulator")
# Create a Quantum Circuit acting on the q register
circuit = qiskit.QuantumCircuit(qubits, classical_bits)
# Map the quantum measurement to the classical bits
circuit.measure([0], [0])
# Execute the circuit on the simulator
job = qiskit.execute(circuit, simulator, shots=1000)
# Return the histogram data of the results of the experiment.
return job.result().get_counts(circuit)
if __name__ == "__main__":
print(f"Total count for various states are: {single_qubit_measure(1, 1)}")